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Abstract— This paper focuses on tackling the problem of
temporal language localization in videos, which aims to identify
the start and end points of a moment described by a natural
language sentence in an untrimmed video. However, it is non-
trivial since it requires not only the comprehensive understand-
ing of the video and sentence query, but also the accurate
semantic correspondence capture between them. Existing efforts
are mainly centered on exploring the sequential relation among
video clips and query words to reason the video and sentence
query, neglecting the other intra-modal relations (e.g., semantic
similarity among video clips and syntactic dependency among the
query words). Towards this end, in this work, we propose a Multi-
modal Interaction Graph Convolutional Network (MIGCN),
which jointly explores the complex intra-modal relations and
inter-modal interactions residing in the video and sentence query
to facilitate the understanding and semantic correspondence
capture of the video and sentence query. In addition, we devise
an adaptive context-aware localization method, where the context
information is taken into the candidate moments and the multi-
scale fully connected layers are designed to rank and adjust
the boundary of the generated coarse candidate moments with
different lengths. Extensive experiments on Charades-STA and
ActivityNet datasets demonstrate the promising performance and
superior efficiency of our model.

Index Terms— Temporal language localization, graph convolu-
tional network, video and language.

I. INTRODUCTION

IN RECENT years, the flourish of multimedia devices has
promoted the unprecedented growth of videos in vari-

ous domains, highlighting the necessity of automatic video
processing. In particular, owing to its great potential in the
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security domain, especially the video surveillance, temporal
action localization in videos that aims to identify the start
and end points of an action query has attracted more and
more researchers [1]–[8]. Traditionally, the action queries
are described by keywords from a pre-defined set, like run-
ning or jumping. Nevertheless, in real-world scenarios, long
untrimmed videos usually involve a large number of objects
and complex activities, which are hard to be pre-defined.
In light of this, in this work, we focus on the task of temporal
language localization in videos, where the activity query is
described by the natural language.

In fact, some research efforts have been dedicated to the task
of temporal language localization in videos [9]–[17]. Since
the semantic correspondence capture between the video and
sentence query plays a pivotal role in this context, earlier
studies [9], [18]–[21] mainly adopt the sliding window strategy
to generate dense candidate moments and then explore the
inter-modal interactions between the candidate moments and
sentence query with various attention mechanisms [22]–[24].
Though these methods have achieved promising performance,
they mainly focus on the inter-modal interactions, ignoring the
sequential dependencies among video clips or query words,
which are also crucial to the understanding of the video or
sentence query. Towards this end, some efforts [11], [13],
[25], [26] have been made to capture the sequential relation
among the video clips and query words with the recurrent
neural networks (RNN) [27]. In fact, besides the sequential
relation, there also exist other intra-modal relations in the
video and sentence query, such as the semantic similarity
among video clips and syntactic dependency among the query
words, as shown in Figure 1. These relations are essential for
the comprehensive understanding of the video and sentence
query, yet they are overlooked by existing methods as it
is challenging to capture these relations via a sequential
manner. In addition, to facilitate the flexible moment local-
ization, where the target moment length is unfixed, existing
methods [9], [11], [18], [28] mainly utilize the pooling or
sampling strategy to regularize the representations of candidate
moments. Nevertheless, the pooling or sampling strategy tends
to merely retain partial prominent information of the candidate
moment, and hence they inevitably suffer from the enormous
information loss regarding the candidate moments, resulting
in the suboptimal performance.

To address the aforementioned issues, in this work,
we devise a Multi-modal Interaction Graph Convolutional Net-
work (MIGCN) for temporal language localization. As shown
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Fig. 1. An example of the intra-modal relations in the video and sentence
query. The clips in boxes of the same color present high semantic similarity,
e.g., “drink water” and “another drink of water”. The arrows between words
show their syntactic dependencies, e.g., “another” is the determiner of “drink”.
In a sense, these relations can facilitate the video reasoning and strengthen the
action understanding of the sentence query, and hence promote the moment
localization for the query “Person takes some more medicine with another
drink of water”.

in Figure 2, both the intra-modal relations and inter-modal
interactions residing in the video and sentence query are
comprehensively explored by the graph convolutional net-
work (GCN) [29] which has been proven to be effective in
propagating information among data with complex relations
[30]–[37]. In particular, we first adopt BiGRU [38] to encode
the video and sentence query, where we split the video into
several clips without overlaps to reduce the computational
complexity. To promote the representation learning of the
video and sentence query by jointly modeling the intra-modal
relations and inter-modal interactions, we then introduce the
multi-modal interaction graph, comprising two types of nodes
(i.e., clip node and word node), and edges that compile
intra-modal relations and inter-modal interactions among the
clips and words. Specifically, we incorporate the temporally
adjacent relation and semantic correlation among video clips,
and the syntactic dependency among words as the intra-modal
relations, and take semantic correspondence between the video
and sentence query as the inter-modal interactions. Based on
this graph, we utilize the graph convolution to fulfil both the
intra- and inter-modal refinement over the node representation
learning. To facilitate the target moment localization with flex-
ible lengths, we employ sliding windows with different sizes
to generate a set of coarse candidate moments with different
lengths. As for the ranking and boundary adjustment of these
coarse candidate moments, we devise an adaptive context-
aware localization method, where the context information is
considered to learn the ranking scores and boundary offsets
of the coarse candidate moments with less information loss
through the multi-scale fully connected layers.

The main contributions of this work can be summarized in
threefold:
• We propose a multi-modal interaction graph convolu-

tional neural network, where a graph comprising both
video clip nodes and word nodes is constructed to jointly
explore the complex intra-modal relations and inter-modal
interactions residing in the video and sentence query.
To the best of our knowledge, this is the first attempt

to construct a multi-modal graph to tackle the problem
of temporal language localization in videos.

• We devise an adaptive context-aware localization method,
which employs the multi-scale fully connected layers and
considers the context information, to rank the variable-
length candidate moments with less information loss
and promote the accurate candidate moment boundary
adjustment.

• Extensive experiments demonstrate the promising per-
formance and efficiency of our MIGCN, compared
with the state-of-the-art methods on two large datasets,
Charades-STA [9] and ActivityNet [39]. As a byproduct,
we have released the codes and involved parameters to
benefit other researchers.1

II. RELATED WORK

A. Temporal Language Localization in Videos

The task of temporal language localization in videos is to
determine the start and end points in an untrimmed video
regarding the activity described in a sentence query, which was
first introduced by Gao et al. [9] and Hendricks et al. [18].
The method in [9] concatenates the representations of the
candidate moment and sentence query to estimate the moment-
sentence alignment score and introduces temporal regression
for the moment boundary adjustment, while [18] targets at
measuring the similarity between the candidate moment and
sentence query in a semantic space. Given that the semantic
correlation capture of the given video and sentence query
constitutes a pivotal part in this task, the researchers have
resorted to various attention mechanisms to enhance the
interaction modeling between the video and sentence query.
For example, Liu et al. [19] developed a memory attention
mechanism to emphasize the visual features that are highly
correlated to the sentence query. It is worth noting that the
intra-modal relations in video and sentence query are crucial
to the representation learning, yet they are overlooked by
these methods. In order to tackle this issue, Yuan et al. [25]
encoded the sequential relations via Bi-directional LSTM to
generate representations of the video and sentence query with
the sequential contextual information. In fact, besides the
temporal relations, there exist other intra-modal relations in the
video and sentence query, e.g., the semantic similarity among
video clips and syntactic dependency among query words,
which can strengthen the representation learning. Towards this
end, we target at comprehensively exploring the intra-modal
relations and inter-modal interactions residing in the video
and sentence query to boost the model performance on the
temporal language localization task.

B. Graph Convolutional Networks

In recent years, graph convolutional networks (GNN) have
drawn increasing attention due to their successful applica-
tions in various tasks [30]–[37], [40]–[42]. At the beginning,

1https://github.com/zmzhang2000/MIGCN/
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Fig. 2. Pipeline of the proposed Multi-Modal Interaction Graph Convolutional Network (MIGCN). We first employ BiGRU to embed the clip and word
features as the initial node representations of the multi-modal interaction graph. Then we utilize the graph convolution to refine the representation of the clip
and word nodes with both the intra-modal relation and inter-modal interaction modeling. Based on the multi-modal fused clip representation matrix X, we use
sliding windows to derive a set of coarse candidate moments with different lengths. Ultimately, we introduce the adaptive context-aware moment localization
module with multi-scale fully connected layers to predict the ranking scores and location offsets of each candidate moment. The red dashed line represents
the information aggregation for the node sh

l by the graph convolution process.

Scarselli et al. [43] introduced the graph neural network for
graph-focused and node-focused applications by extending
recursive neural networks and random walk models. Inspired
by this, Kipf et al. [29] presented the graph convolutional
network (GCN) and defined the convolution on non-grid
structures.

Since then, GCN has been employed in various tasks. For
example, in natural language processing, Marcheggiani and
Titov [44] employed GCN to model the syntactic dependency
among words in sentence and learn the latent representations
of words. In video understanding, Zhang et al. [45] put forward
a temporal reasoning graph, which captures the temporal
relation among video frames, to tackle the task of action
recognition. Moreover, in the context of temporal language
localization, Zeng et al. [3] introduced an action proposal
graph to model the relations among different proposals, while
Zhang et al. [46] presented an iterative graph adjustment
network to exploit the graph-structured moment relations.
Although these efforts have achieved promising performance,
they only focus on enhancing the single-modal representation
learning with GCN, while overlooking the potential of GCN
in propagating information on multi-modal relations residing
in the video and sentence query.

In fact, there have been several multi-modal based works
employing GCN to promote the inter-modal interaction and
achieving improved performance. For example, in the task of
object grounding with textual description, Chen et al. [47]
utilized the GCN to enhance the reasoning of the object and
text, as well as boost the information passing among the object
and text modalities. In addition, Bajaj et al. [48] proposed a
grounding architecture with three connected graphs to tackle
the language grounding, where a phrase graph and a visual
graph are designed to boost the intra-modal representation, and
then based on that a fusion graph is derived to enhance the
inter-modal interaction. In this work, we focused on promoting

both the video and sentence representation learning via the
multi-modal interaction graph to tackle the task of temporal
language localization in videos. In addition, it is worth noting
that different from the graphs with entirely learned edges in
other vision-language tasks [47]–[49], our proposed multi-
modal interaction graph explicitly leverages the temporally
adjacent relation and semantic similarity among video clips,
and the syntactic dependency in sentence by pre-defined
adjacency matrices. Compared with other multi-modal graph
methods, the pre-established adjacency matrices in our method
are more interpretable and able to impose more powerful
inductive biases to the model.

III. METHOD

A. Problem Formulation

In this work, we aim to tackle the problem of temporal lan-
guage localization in videos. Suppose we have an untrimmed
video V = {vt }Tt=1, which can be split into T parts, where
vt denotes the t-th video clip, and T is the number of video
clips. Besides, we have a sentence query S = {sl}Ll=1, where sl

is the l-th word in the sentence and L represents the sentence
length. For each sentence query, we have a ground truth start-
end points of the target moment represented as (τ s , τ e). In a
sense, our goal is to learn a mapping function F defined as
follows:

F : (V , S)→ (τ s, τ e). (1)

B. Multi-Modal Interaction Graph Construction

Undoubtedly, it is essential for the temporal language local-
ization method to comprehensively reason the given video
and sentence. Existing efforts [9], [10], [18], [20], [25]
mainly employ the sequential structures (e.g., recurrent neural
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networks) to reason the video and sentence due to their
intrinsic sequential property. Nevertheless, apart from the
sequential dependency, there are also other intra-model rela-
tions that can facilitate the reasoning of the video and sentence,
e.g., the semantic similarity among the video clips and syn-
tactic dependency among the sentence words. To boost these
intra-model relations learning, we resort to the graph neural
network, where these relations can be explicitly modeled by
the edges in the graph rather than implicitly excavated from
training data. These edges in graph connect correlated clips
and words, which impose more powerful inductive biases [50]
(i.e., more prior knowledge) on the neural network, and thus
ease the relation learning. As the key of the temporal language
localization task is to capture the semantic correspondence
between the video clips and sentence query, in addition to the
aforementioned intra-modal relations, we also model the inter-
modal interaction among the video and sentence, and hence
introduce a multi-modal interaction graph.

1) Node Initialization: The multi-modal interaction graph
has two types of nodes: clip nodes and word nodes. To initial-
ize the clip node, we employ the pre-trained model [51]–[53]
to extract the visual feature vt of the t-th clip. Then,
to comprehensively explore the semantic information in the
clip sequence, we employ Bi-directional Gated Recurrent
Unit (BiGRU) to encode the whole video. In particular,
the BiGRU network comprises a

−−−→
G RU v moving forward from

the start to the end of the video, a
←−−−
G RU v moving in the

opposite direction, and a fully connected layer f v , which takes
the concatenation of the t-th hidden states of the two GRUs
as the input. Ultimately, the output is used as the initial clip
node representation vh

t , which can be formulated as follows:⎧⎪⎨
⎪⎩
−→
h v

t =
−−−→
G RU v (vt ,

−→
h v

t−1),←−
h v

t =
←−−−
G RU v (vt ,

←−
h v

t+1),

vh
t = f v (

−→
h v

t ‖
←−
h v

t ),

(2)

where
−→
h v

t and
←−
h v

t denote the t-th clip hidden states of the
forward and backward GRUs, respectively. ‖ signifies the
concatenation operation and the Leaky ReLU active function
is adopted for f v .

The word node can be initialized in a similar manner.
We first project each word sl into the embedding sl by
Glove [54] and then utilize BiGRU to encode each word with
the context information of the sentence, which can be defined
as follows, ⎧⎪⎨

⎪⎩
−→
h s

l =
−−−→
G RUs(sl ,

−→
h s

l−1),←−
h s

l =
←−−−
G RUs(sl ,

←−
h s

l+1),

sh
l = f s(

−→
h s

l ‖
←−
h s

l ),

(3)

where
−→
h s

l and
←−
h s

l are the l-th word hidden states of the
forward and backward GRUs, respectively. f s is the fully
connected layer with Leaky ReLU active function. sh

l is the
final initialization for the l-th word node.

2) Clip-Clip Edge: Intuitively, the sequence order of clips
in a video reflects the temporally adjacent relation among
these clips. Meanwhile, in the context of temporal language
localization, the given sentence query may correspond to

multiple clips over the whole video, where these clips tend to
be visually similar and semantically correlated. Consequently,
to explore both the temporal and semantic correlations and
enhance the representation learning of clips, we devise two
types of clip-clip edges. On the one hand, for the temporally
adjacent clip pairs, we define a set of temporal correlated edges
as follows:

E t = {(vi , vi+1)|i ∈ {1, 2, . . . , T − 1}}, (4)

where (vi , vi+1) represents the edge between the i -th and the
next clip nodes. We set the weight of each edge (vi , vi+1) ∈ E t

as 1. On the other hand, to model the semantic correlation,
we link two clip nodes if they share the similar visual content.
In particular, we define a set of semantic correlated edges as
follows:

Es = {(vi , v j )|dc(vi , v j ) > θ ∧ i �= j}, (5)

where i, j ∈ {1, 2, . . . , T }. dc(vi , v j ) is the cosine similarity
between the i -th and j -th clip features extracted by the pre-
trained model, which can be computed by:

dc(vi , v j ) = vT
i v j

‖vi‖2 · ‖v j‖2 . (6)

θ is the pre-defined threshold. We set the weight of the edge
(vi , v j ) ∈ Es as dc(vi , v j ). Finally, we can obtain the clip-clip
edge set Evv = E t ∪ Es ∪ E l , where E l is the set of self-loop
edges utilized to maintain the information of the node itself.
We set the weight of each self-loop edge as 1.

3) Word-Word Edge: Considering the success of the syn-
tactic dependency graph in the query semantic understand-
ing [44], we extract the syntactic dependency among words
by Stanford CoreNLP [55] and represent each dependency
relation as an edge. Accordingly, we derive a set of word-
word edges denoted as follows:

Ess = {(si , s j )|〈i, j〉 ∈ � ∨ i = j}, (7)

where � denotes the syntactic dependency relation set
extracted from the sentence query, while 〈i, j〉 indicates that
there are the syntactic dependency between the i -th and the
j -th words in the sentence, i, j ∈ {1, 2, . . . , L}. The weight of
each edge (si , s j ) ∈ Ess is set as 1. Notably, self-loop edges
are also included in Ess to preserve the information of the
words themselves.

4) Clip-Word Edge: To promote the information propaga-
tion among different modalities, apart from the intra-modal
edges, we also bridge each clip and each word to constitute
the inter-modal edges. In particular, we connect each clip with
each word and get the clip-word edge set as follows:

Evs = {(vi , s j )|i ∈ {1, 2, . . . , T }, j ∈ {1, 2, . . . , L}}. (8)

Given that our goal is to localize the moment described by
the sentence query, the inter-modal interactions are particularly
essential. Different from the static weight setting for clip-clip
edges and word-word edges, the weight for each clip-word
edge (vi , s j ) is dynamically updated according to the node
similarity defined as ds(vi , s j ) = (vh

i )T sh
j .
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C. Multi-Modal Interactive Representation Refinement

Over the constructed multi-modal graph, we adopt the graph
convolution process which is capable of propagating informa-
tion among nodes with complex relations to enhance the clip
and word representation learning. Basically, the general graph
convolution can be implemented as follows:

H = σ(AXW), (9)

where H represents the hidden representations of the nodes,
and A is the adjacency matrix. X denotes the input node fea-
tures, and W is the to-be-learned weight matrix. σ represents
the non-linear operation. In a sense, each node representation
can be refined according to the representations of itself and
its adjacent nodes with a graph convolution operation. In our
context, the graph convolution refinement over the clip and
word representations consists of two aspects: intra- and inter-
modal refinements.

1) Intra-Modal Refinement: According to Eqn.(9), the intra-
modal node representation refinement can be implemented by:{

Ṽ = ReLU(AvvVWvv ),

S̃ = ReLU(AssSWss),
(10)

where V = [vh
1; vh

2; . . . ; vh
T ] and S = [sh

1; sh
2; . . . ; sh

L ].
Ṽ ∈ R

T×d , S̃ ∈ R
L×d are the refined clip and word node

representations, respectively. Wvv ∈ R
d×d and Wss ∈ R

d×d

are the learnable parameters. ReLU denotes the leaky ReLU
function. Avv ∈ R

T×T represents the clip node adjacency
matrix, which is constructed according to the clip-clip edge
set Evv , while Ass ∈ R

L×L is the word node adjacency matrix
constructed with the word-word edge set Ess . Note that if
(vi , v j ) /∈ Evv , we set the value of Avv (i, j) as 0. Similarly,
if (si , s j ) /∈ Ess , we set the value of Ass(i, j) as 0.

2) Inter-Modal Refinement: To fulfil the inter-modal refine-
ment, one simple method is to update the node representations
of each modality according to the inter-modal adjacent relation
as follows: {

Xv = ReLU(Asv S̃Wsv ),

Xs = ReLU(AvsṼWvs),
(11)

where Xv and Xs are the refined clip and word node rep-
resentations, respectively. Asv and Avs are respectively the
word-clip and clip-word adjacency matrices, both constructed
based on the clip-word edge set Evs . Wsv and Wvs are
the parameters to be learned. Apparently, this simple graph
convolution operation only refers the node representations
from another modality (e.g., the sentence words) to refine one
modality (e.g., the video clips), totally ignoring the modality
inherent information, which may hinder the thorough cap-
ture of the semantic interactions between the two modalities
and hence hurt the performance. Therefore, to realize the
comprehensive inter-modal refinement, we resort to the gate
mechanism (i.e., gated graph convolution [47]), and the inter-
modal refinement over the clip node representation is then
formulated as follows:⎧⎪⎨

⎪⎩
Hs = Asv S̃Wsv ,

Zv = sigmoid([Ṽ‖Hs ]Wgate,v),

Xv = ReLU(Zv ◦ Ṽ + (1− Zv ) ◦Hs),

(12)

where ◦ denotes the Hadamard multiplication of two matrices.
Hs ∈ R

T×d is the word information obtained from the word
node via the graph convolution, and Zv ∈ R

T×d denotes the
retain ratio matrix of clip representations. Wsv ∈ R

d×d and
Wgate,v ∈ R

2d×d are parameters to be learned. Asv ∈ R
T×L

is the word-clip adjacency matrix constructed according to the
clip-word edge set Evs .2

Similarly, we summarize the inter-modal refinement over
the word node representation as follows:⎧⎪⎨

⎪⎩
Hv = AvsṼWvs,

Zs = sigmoid([S̃‖Hv ]Wgate,s),

Xs = ReLU(Zs ◦ S̃+ (1− Zs) ◦Hv ),

(13)

where Hv ∈ R
L×d is the clip information obtained from the

clip node via the graph convolution, and Zs ∈ R
L×d denotes

the retain ratio matrix of word representations. Wvs ∈ R
d×d

and Wgate,s ∈ R
2d×d are parameters to be learned. Avs ∈

R
L×T is the clip to word adjacency matrix.
Ultimately, we can obtain the refined clip and word rep-

resentations Xv = [xv
1, xv

2, . . . , xv
T ] ∈ R

T×d and Xs =
[xs

1, xs
2, . . . , xs

L] ∈ R
L×d , which encode both the intra-modal

relations and inter-modal semantic interactions.

D. Moment Localization

Based on the refined clip and word representations,
we resort to sliding windows with different sizes to first
generate a set of coarse candidate moments with different
lengths to facilitate the target moment localization with flexible
lengths. To accurately localize the target moment, we propose
an adaptive context-aware localization method to rank the
candidate moments and adjust their boundaries, where the
context information of the candidate moments is taken into
account and the multi-scale fully connected layers are devised
to adaptively tackle candidate moments with different lengths.

1) Candidate Moment Representation: We first generate
variable-length candidate moments by a set of sliding windows
with sizes of {ωm}Mm=1. In particular, we slide the window
with each size ωm on the T video clips with a stride of δ
to generate candidate moments. Be aware that we discard the
candidate moment whose boundary (either the start point or
the end point) exceeds the video clip range. We denote the set
of candidate moments generated by ωm as {(ts,m

c , te,m
c )}Cm

c=1,
where ts,m

c and te,m
c are respectively the start and end points

of the c-th candidate moment generated by the sliding window
with size ωm . In addition, considering that the information near
the candidate moment is essential for adjusting the moment
boundary, different from [11], [56], we take the context
information into account to get more accurate boundary offsets
of candidate moments. In particular, we expand both the
start and end points of the c-th candidate moment, which is
formulated as: ⎧⎪⎨

⎪⎩
t̃ s,m
c = ts,m

c − ωm

2
,

t̃ e,m
c = te,m

c + ωm

2
.

(14)

2To keep Hs and S̃ in the same scale and balance the impact of Ṽ and
S̃ on Xv , we perform the row-wise normalization on Asv to facilitate the
information propagation.
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In a sense, each candidate moment length is doubled by this
context extension. In order to measure the matching degree
between each candidate moment (ts,m

c , te,m
c ) and the sentence

query, we first employ a non-linear transformation to get
the sentence embedding s̃ ∈ R

d based on the refined word
representations as follows:

s̃ = ReLU(WsXs), (15)

where Ws ∈ R
1×L is the transformation parameter. Thereafter,

we concatenate the sentence embedding to each clip represen-
tation of the candidate moment, i.e., xv

t , where vt ∈ (t̃ s,m
c , t̃ e,m

c )
and then derive the moment representation as Xm

c ∈ R
2ωm×2d .

Note that we pad zero to Xm
c if the extended start point or end

point exceeds the video clip range, i.e., [1, T ].
2) Adaptive Context-Aware Localization: Based on the can-

didate moment set, the task of temporal language localization
can be converted to the candidate moment ranking problem.
Similar to the previous work [9], apart from the candidate
moment ranking, we also predict the offsets of the start and
end point of the candidate moment with a sibling output
layer to refine the location of candidate moment. Towards
this end, existing methods [9], [11], [18], [28] mainly employ
the pooling or sampling strategy to unify the representation
dimensions of candidate moments with different lengths. Nev-
ertheless, the pooling or sampling strategy mainly focuses on
retaining the prominent information of the candidate moment,
which inevitably suffers from the information loss to some
extent. Towards this end, to retain the information as much
as possible, we devise the multi-scale fully connected layers
to adaptively process the candidate moments with different
lengths. In particular, we calculate the ranking score rm

c and
offset (ds,m

c , de,m
c ) of the candidate moment (ts,m

c , te,m
c ) as

follows: ⎧⎪⎨
⎪⎩

rm
c = sum(Xm

c ◦Wm
r )+ bm

r ,

ds,m
c = sum(Xm

c ◦Wm
s )+ bm

s ,

de,m
c = sum(Xm

c ◦Wm
e )+ bm

e ,

(16)

where sum() is the sum operator over all elements in a
matrix. Wm

r , Wm
s and Wm

e are learnable weight matrices of
the multi-scale fully connected layers, which have the same
dimensions with the candidate moment representation Xm

c .
bm

r , bm
s and bm

e are the corresponding biases. It is worth
noting that as the dimension of Xm

c is decided by the sliding
window size, all the candidate moments generated by a specific
window would share the identical parameters in the multi-
scale fully connected layers. Ultimately, the rectified boundary
(τ̂ s,m

c , τ̂ e,m
c ) is computed by:{

τ̂ s,m
c = ts,m

c + ds,m
c ,

τ̂ e,m
c = te,m

c + de,m
c .

(17)

E. Learning

As for the optimization, we utilize the alignment loss [56],
ranking loss [16] and regression loss [9], where the former loss
is used for encouraging the model to evaluate the alignment
degree between each candidate moment and the ground truth
moment, while the latter two losses are used for adjusting the
ranking scores and boundaries of candidate moments.

1) Alignment Loss: Similar with [56], we employ the align-
ment loss to assign high ranking scores to the candidate
moments in line with the ground truth moment and lower
ranking scores to the other moments. In this work, we employ
Intersection over Union (IoU) between each candidate moment
(ts,m

c , te,m
c ) and the ground truth moment(τ s, τ e), denoted as

γ m
c , to represent their alignment degree.
Accordingly, we utilize binary cross entropy and formulate

the alignment loss as follows:⎧⎪⎪⎨
⎪⎪⎩

r̂m
c = sigmoid(rm

c ),

Laln = − 1

C

M∑
m=1

Cm∑
c=1

γ m
c log(r̂m

c )+ (1− γ m
c ) log(1− r̂m

c ),

(18)

where r̂m
c is the normalized ranking score, which is regarded

as the predicted IoU of the c-th candidate moment generated
by the sliding window with size ωm . Cm is the number of
the candidate moments generated by the sliding window with
size ωm , and C is the total number of the candidate moments.
In particular, we set γ m

c to 0, if γ m
c is less than a pre-defined

threshold λ, to promote the identification of the high-score
candidate moment [56].

2) Ranking Loss: As there can be plenty of candidate
moments having similar locations and lengths with the target
moment, it is hard to select the optimal candidate moment
among them. Therefore, to promote the model to distinguish
the optimal candidate moment, similar with [16], we adopt the
multi-class cross entropy loss as the ranking loss, which can
be formulated as follows:⎧⎪⎪⎨

⎪⎪⎩
c∗, m∗ = arg max

c,m
γ m

c ,

Lrank = − log(
exp(rm∗

c∗ )∑M
m=1

∑Cm
c exp(rm

c )
),

(19)

where rm∗
c∗ is the ranking score of the optimal candidate

moment, which has the highest IoU with the ground truth
moment. The ranking loss promotes the model to distinguish
the optimal candidate moment from other candidates by raising
its ranking scores while decreasing that of others.

3) Regression Loss: Considering that the candidate
moments generated by sliding windows with fixed lengths may
not exactly align with the ground truth moment, we propose
to predict the candidate moment offset to adjust the boundary
and employ the offset regression presented in [9] to optimize
the location of candidate moment. The regression loss is
formulated as:

Lreg = SL1(τ
s − τ̂ s,m∗

c∗ )+ SL1(τ
e − τ̂ e,m∗

c∗ ), (20)

where SL1() is the Smooth L1 function [57]. (τ̂ s,m∗
c∗ , τ̂ e,m∗

c∗ ) is
the rectified boundary of the candidate moment that has the
highest IoU with the ground truth moment.

Hence we obtain the final objective function of the proposed
model as follows:

L = Laln + αLrank + βLreg, (21)

where α and β are hyper-parameters to balance these items.
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IV. EXPERIMENTS

A. Datasets

To evaluate the proposed method, we conducted experi-
ments on two benchmark datasets.

1) Charades-STA [9]: The Charades-STA dataset is built
based on the Charades [58] dataset, comprising 6, 672 videos
of indoor activities. Totally, there are 12, 408 moment-sentence
pairs in the training set and 3, 720 pairs in the testing set. The
videos in Charades-STA are 30 seconds on average and the
annotated moments are 8 seconds on average.

2) ActivityNet [39]: We evaluate our model on another
benchmark ActivityNet Captions built upon the videos from
ActivityNet [59], to demonstrate the robustness of the pro-
posed model. The dataset contains 20, 000 videos, 37, 421
moment-sentence pairs for training and 34, 536 pairs for
testing. On average, the videos in ActivityNet are 180 seconds
and each annotated moment lasts for 36 seconds.

B. Experimental Settings

1) Evaluation Metric: Similar with [9], we adopted the
metric of “R@1, IoU@n” to measure our model. Specifically,
this metric represents the percentage of the top one candidate
moments for all sentence queries with IoU larger than n for all
the given sentence queries, where the IoU is calculated with
the boundaries of the predicted moment and the ground truth
moment.

2) Implementation Details: For the video representation,
we split each video in Charades-STA into 75 clips and that in
ActivityNet into 300 clips. For Charades-STA, based on the
previous studies, we utilized three mainstream frameworks:
I3D network [51], C3D network [53] and Two-Stream net-
work [52] to extract the visual features of 1, 024-D, 4, 096-D,
and 8, 192-D, respectively. For ActivityNet, we directly uti-
lized the publicly available 500-D C3D features,3 which are
derived by PCA over the original 4, 096-D visual features
extracted by C3D network.

For the sentence representation, we first tokenized the
sentence query and extracted the syntactic dependency graph
using Stanford CoreNLP [55] toolkit. Then we employed the
Glove [54] model pre-trained on Wikipedia to obtain the
300-D embedding feature for each word token. The max length
of the sentence query in Charades-STA and ActivityNet are
respectively set to 10 and 50. We truncated the sentences
exceeding the maximum length and padded the shorter ones
with zeros.

In the training phase, the batch size is set to 128 and
Adam optimizer is used for optimization. The learning rate
is set to 0.001 and 0.0003 for Charades-STA and ActivityNet,
respectively. Furthermore, we added a weight decay item with
factor 0.00001 and a dropout probability 0.5 to improve the
performance. The node dimension d is set as 256 and 512
for Charades-STA and ActivityNet, respectively, while the
dimension of GRU hidden state is half of the node dimension.
The threshold θ and λ are set to 0.7 and 0.3. The trade-off
α and β are set to 0.1 and 0.001 for Charades-STA, 1 and

3http://activity-net.org/challenges/2016/download.html#c3d/

0.001 for ActivityNet, respectively. We set 6 window sizes of
[6, 12, 18, 24, 30, 36] for Charades-STA and 7 window sizes
of [6, 12, 24, 48, 96, 192, 288] for ActivityNet. Window stride
δ is set to 3. More details are in our released code.

C. Comparison Among Methods

We compared the proposed MIGCN with other state-of-
the-art methods on Charades-STA and ActivityNet. Among
these methods, MCN [18], CTRL [9], ACRN [19], TGN [11],
SAP [14], QSPN [13], CBP [60], MAN [46], 2D-TAN [62]
and DRN [63] are based on the proposal generation and
ranking. To improve the computation efficiency, ABLR [25]
and ExCL [26] directly predict the location without the dense
proposal generation. In addition, RWM [12], TripNet [21], and
TSP-PRL [61] regard the task as a sequential decision making
process and employ the reinforcement learning paradigm to
iteratively adjust the boundary of the moment. According to
the original papers, ExCL [26], MAN [46], and DRN [63]
adopt the I3D features, TSP-PRL [61] selects both the Two-
Stream and C3D features, while DRN [63] and other methods
use the C3D features.

Table I shows the performance of different methods, from
which we could observe that: 1) The proposed MIGCN
exhibits superiority over other methods in most scenarios,
demonstrating the effectiveness and robustness of our model.
2) On Charades-STA dataset, MIGCN is inferior to DRN with
C3D feature but outperforms DRN with I3D feature. One
possible reason is that the I3D network has higher temporal
resolution and deeper architecture [51] than C3D and hence is
able to learn the representation of activity with more concrete
semantics. Compared with the feature pyramid construction in
DRN, which may collapse the semantics in the I3D feature,
the graph convolution in MIGCN is more likely to completely
capture the feature semantics and thus result the better perfor-
mance. 3) Both MIGCN and TSP-PRL perform better on the
Two-Stream features than C3D features. One possible reason
is that compared with the C3D features, the Two-Stream
with optical flow features are more powerful in capturing
temporal information and recognizing the actions in the clips
and can benefit the temporal language localization task. Form
the observation 2) and 3), we found that MIGCN exhibits
different degrees of improvement over other methods with
different visual features, but it is difficult to provide intuitive
explanations. Therefore, we will dive into the effects of various
visual and linguistic representations, e.g., VL-BERT [64] and
BERT [65], on vision-language tasks in our future work.
And 4) MIGCN, MAN and 2D-TAN that have graph or
graph-like components achieve better performance than most
purely sequence-based networks, e.g., CTRL, TGN and CBP.
This could be an evidence that the graph architecture may
have advantage in this task and benefit the performance
in general.

D. Ablation Study

We conducted the ablation study to demonstrate the effects
of the components in MIGCN.

Authorized licensed use limited to: SHANDONG UNIVERSITY. Downloaded on October 15,2022 at 07:38:24 UTC from IEEE Xplore.  Restrictions apply. 



8272 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 30, 2021

TABLE I

PERFORMANCE COMPARISON ON CHARADES-STA AND ACTIVITYNET DATASETS IN TERMS OF R@1, IOU@n (%). THE RESULTS OF OTHER METHODS
ARE REPORTED ACCORDING TO THEIR PAPERS OR EXISTING REIMPLEMENTS

1) Ablation on Multi-Modal Interaction Graph: To exploit
the effect of the multi-modal interaction graph convolution,
we designed the following derivations of MIGCN:
• MIGCN-w/o-GCN: We removed the total process of

multi-modal interactive representation refinement and
generated the candidate moment representation merely
with the output of BiGRU, i.e., vh

t and sh
l .

• MIGCN-G3G: To verify the effectiveness of the multi-
modal interaction graph, we replaced our graph refine-
ment procedure with that in G3RAPHGROUND [48].
MIGCN-G3G first executes intra-modal refinement to
refine the video clip and sentence representations.
Then MIGCN-G3G concatenates the sentence represen-
tations to each clip representation and conducts the
graph convolution using clip-clip edges to fuse the two
modalities.

• MIGCN-w/o-Inter: We disabled the inter-modal refine-
ment and only used the intra-modal refinement in the
graph convolution refinement process to validate the
importance of the inter-modal interactions.

• MIGCN-w/o-Temp: We removed the temporal correlated
edges in the intra-modal refinement to investigate the
impact of the temporally adjacent relation.

• MIGCN-w/o-Seman: We removed the semantic correlated
edges in the intra-modal refinement to validate the influ-
ence of the semantic similarity relation.

• MIGCN-w/o-Syntac: We removed the syntactic depen-
dency edges in the intra-modal refinement to demonstrate
the effectiveness of the syntactic dependency.

• MIGCN-w/o-Gate: To explore the effect of the gated
graph convolution in inter-modal refinement, we replaced
it with the naive graph convolution in Eqn.(11).

Table II presents the ablation study results, from which
we could observe that: 1) MIGCN shows superiority over
MIGCN-w/o-GCN and MIGCN-G3G, demonstrating the

TABLE II

PERFORMANCE COMPARISON AMONG THE PROPOSED MIGCN AND ITS

DERIVATIONS IN TERMS OF R@1, IOU@n (%) BASED ON THE I3D
FEATURES OF CHARADES-STA AND C3D FEATURES

OF ACTIVITYNET

effectiveness of the multi-modal interaction graph in MIGCN.
As for the two different multi-modal graph architectures,
MIGCN performs the modality fusion after the intra-modal
and inter-modal refinement, while MIGCN-G3G fuses the two
modalities before the inter-modal refinement. The early modal
fusion in MIGCN-G3G may affect the correlation capture
among the video and sentence query in the temporal language
localization task and thus results in the inferior performance.
2) MIGCN outperforms MIGCN-w/o-Inter, indicating the
effectiveness of the inter-modal refinement in our method. The
reason may be that, the inter-modal refinement is the key of
the temporal language localization task to capture the semantic
correspondence between the video and sentence query, and
thus is pivotal to ensure the performance. 3) MIGCN surpasses
MIGCN-w/o-Temp, MIGCN-w/o-Seman, and MIGCN-w/o-
Syntac, suggesting the necessity of employing the intra-modal
refinement in the task of temporal language localization in
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TABLE III

EFFICIENCY COMPARISON AMONG DIFFERENT METHODS ON CHARADES-STA AND ACTIVITYNET DATASETS

videos. The possible explanation is that the temporally adja-
cent relation and semantic correlation among video clips can
promote the excavating of the sequential information and
semantic clues among video clips, respectively, and hence
boost the reasoning of the video. Moreover, the syntactic
dependency among words is able to parse the sentence query
and thus strengthen the representations learning of objects and
actions in the sentence query. In a sense, these intra-modal
relations are able to benefit the comprehensive understanding
of the video and sentence query, which undoubtedly promote
the inter-modal semantic correlation capture between the two
modalities. And 4) MIGCN outperforms MIGCN-w/o-Gate,
which implies that the modality inherent information retained
by the gate mechanism can contribute to the inter-modal
refinement and performance improvement.

2) Ablation on Adaptive Context-Aware Localization: To
investigate the effect of the adaptive context-aware localization
method, we devised the following derivations:
• MIGCN-MP: To check the impact of multi-scale

fully connected layers in information maintaining,
we employed the max-pooling operation to process the
candidate moments with different lengths and then used
a general fully connected layer to score the candidate
moments and predict their offsets.

• MIGCN-Sample: Similar with [56], we sampled the cen-
ter vector of the candidate moment representation as its
final representation and then scored the candidate moment
and predicted its offsets same as MIGCN-MP.

• MIGCN-w/o-Context: To evaluate the effect of the con-
text information, we scored the candidate moments and
predicted the offsets without extending the candidate
moments.

From Table II, we observe that 1) a large performance
decrease in both MIGCN-MP and MIGCN-Sample compared
with MIGCN, which suggests that the information loss caused
by MIGCN-MP and MIGCN-Sample can seriously deterio-
rate the performance. 2) MIGCN outperforms MIGCN-w/o-
Context in most scenarios, confirming the importance of
the context information in the candidate moment scoring
and offset prediction. The underlying philosophy is that the
context of candidate moment may convey the background
or surrounding clues of the query moment, which can pro-
mote the localization accuracy. And 3) the performance
improvement by context information on ActivityNet is more
significant than that on Charades-STA. This phenomenon
may be caused by the longer video duration of ActivityNet,

where the video context are more informative for the
localization.

E. Efficiency Analysis

To gain the comprehensive understanding of our proposed
MIGCN, we also analyzed its efficiency. We calculated
the computation time (Time) [25], the frames per sec-
ond (FPS) [11], the floating point operations (FLOPs) [45], and
the number of parameters (Params) [45] of different methods.
In particular, Time is defined as the average time to localize
one sentence query in the video. FPS is calculated as dividing
the number of frames in the video by its computation time.
FLOPs is defined as the average floating point operations to
localize one sentence query in the video. Params is the total
number of learnable parameters in the model. Among these
indicators, the model efficiency is mainly reflected by Time
and FPS. FLOPs is the reference of the required computation
of the method and calculated without considering the concrete
implementation of model. Params is the reference of the
required space. For a fair comparison, the feature extraction
and data loading procedure are excluded in the Time, FPS and
FLOPs calculation. It is worth noting that Time and FLOPs
are not proportionally correlated. The underlying reason is
that different methods are implemented with different parallel
degree as they contain various network structures, e.g., linear
layers and convolution layers.

All the experiments are conducted on a single NVIDIA
GeForce RTX 2080 Ti GPU. For a fair comparison, we only
compare our MIGCN with those methods that have code and
hyper-parameters publicly released. Except for the compari-
son, to show the highest efficiency of our method, we also
display the results of MIGCN on Charades-STA with I3D
feature, which has the minimum feature dimension compared
with C3D and Two-Stream features.

From Table III, we observe that: 1) Among all the proposal-
based methods (i.e., CTRL, MAC, DRN, 2D-TAN and
MIGCN), the Time of MIGCN, 2D-TAN and DRN are much
shorter than that of CTRL and MAC. This may due to the fact
that the former methods localize one moment with a single
run of the model, while the latter ones require multiple times
of model running to score all the candidate moments and
then localize the target moment, which is time-consuming.
2) Compared with other single run models (i.e., 2D-TAN
and DRN), our MIGCN spends less Time and has lower
FLOPs and Params. 3) Although MIGCN is based on the
dense proposal generation and ranking, the Time and FPS of
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Fig. 3. Visualization of the candidate moment scores of MIGCN and MIGCN-w/o-GCN with two examples in Charades-STA dataset, where the IoUs of
candidate moments with the ground truth are also provided for comparison. The horizontal and vertical coordinates stand for the center clip index and length
of candidate moment, respectively. Scores in each row are smoothed by linear interpolation. Lighter colors indicate higher candidate moment scores.

MIGCN on Charades-STA with C3D are comparable with the
proposal-free reinforcement learning based TSP-PRL. There-
fore, we can draw the conclusion that our MIGCN has not only
the promising performance but also the superior efficiency.

F. Result Visualization

In order to gain more deep insights regarding the effects
of intra-modal relations as well as inter-modal interactions,
we visualized the scores of candidate moments predicted by
MIGCN and MIGCN-w/o-GCN with examples in Figure 3.
In Figure 3(a), given the sentence query “Person looks over
at a picture”, MIGCN-w/o-GCN highly scores all the can-
didates that contain the action of a person looking over at
some objects, such as laptop, curtain and bottle. Beyond that,
MIGCN gives the high score to the candidate moment only

when the person looks over at a picture, and thus obtains a
more similar score distribution with the ground truth. This may
be attributed to the fact that MIGCN not only understands
the more concrete action “looks over at the picture” due
to the intra-modal relation, i.e., syntactic dependency, but
also comprehensively considers the inter-modal interactions
between the sentence query and video, and giving more
rational candidate moment scores. As to the slightly high
score predictions of MIGCN at the beginning of the video,
one possible explanation is that these candidate moments
contain the action that the person looks over at the laptop,
which is rather indistinguishable with the picture. Similarly,
in Figure 3(b), MIGCN gives high scores to the candidates
where the person “wash dishes”, which is more accurate than
MIGCN-w/o-GCN, since the latter only sees the “dishes” in
the video while neglecting the key action “wash”.
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Fig. 4. Prediction examples of MIGCN, MIGCN-w/o-Context, MIGCN-Sample and MIGCN-MP on Charades-STA dataset. The annotations in green color
represent the ground truth moments. Those in gray color denote the retrieved coarse candidate moments without boundary adjustment, while those in blue
represent the predicted locations after boundary adjustment.

Moreover, we provided some prediction results of MIGCN,
MIGCN-w/o-Context, MIGCN-Sample and MIGCN-MP to
intuitively show the effect of the adaptive context-aware local-
ization method in Figure 4. As we could see from the two
examples, with the multi-scale fully connected layers, MIGCN
selects the more ideal coarse candidate moments than MIGCN-
Sample and MIGCN-MP, indicating that compared with the
sampling and pooling methods, the multi-scale fully connected
layers of MIGCN are able to rank the variable-length candidate
moments with less information loss and thus accurately locate
the target moment. In addition, we observed that although
MIGCN and MIGCN-w/o-Context select the same candidate
moment, MIGCN obtains a higher IoU result with the more
precise boundary adjustment. Similar observation can be found
in the second example, which confirms the effect of the context
information in the boundary adjustment.

V. CONCLUSION

In this work, we propose a multi-modal interaction graph
convolutional network to tackle the task of temporal language
localization in videos, which promotes the comprehensive
understanding of the video and sentence query and facil-
itates their semantic correspondence capture with both the
intra-modal relation and inter-modal interaction modeling.
Moreover, we devise an adaptive context-aware localization
method to calculate the ranking scores and boundary off-
sets of the coarse candidate moments, which considers the
context and retains the information of candidate moments
as much as possible with the multi-scale fully connected
layers. Extensive experiments on Charades-STA and Activi-
tyNet datasets verify the superior effectiveness and efficiency

of our method compared with the state-of-the-art methods.
Furthermore, the ablation study confirms the virtues of intra-
modal relations, inter-modal interactions and adaptive context-
aware localization method on this task. As for the future work,
on the one hand, we plan to investigate the effect of visual
and linguistic representations on vision-language task. On the
other hand, we would enhance the generalization of the model
to adapt to various datasets (i.e., TACoS [66]).
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