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Abstract—Scene Graph Generation (SGG) is to abstract the
objects and their semantic relationships within a given image.
Current SGG performance is mainly limited by the biased
predicate prediction caused by the long-tailed data distribution.
Though many unbiased SGG methods have emerged to enhance
the prediction of the tail predicates, their improvements on the
tail predicates are often accompanied by the deterioration on the
head ones, leading the prediction overly debiased. Toward this
end, in this work, we propose a Dual-Biased Predicate Predictor
(DBiased-P) to boost the unbiased SGG, which comprises a re-
weighted primary classifier and an unweighted auxiliary classi-
fier. The former classifier is tail-biased and used for the final pred-
icate prediction, while the latter one is head-biased and designed
to boost the head predicate prediction of the primary classifier
by a head-oriented soft regularization. Experiments conducted on
Visual Genome and Open Image datasets indicate the superiority
of our DBiased-P in unbiased SGG, which significantly improves
the recall@50 of the state-of-the-art unbiased SGG method DT2-
ACBS from 23.3% to 55.5% as well as the mean recall@50 from
35.9% to 37.7%.

Index Terms—Scene Graph Generation, Vision and Language,
Re-Weighting Classification, KL-Divergence.

I. INTRODUCTION

Scene Graph Generation (SGG) aims to detect objects and
predict their pairwise relationships (i.e., predicates) in an
image. Essentially, the scene graph can be abstracted as a
set of 〈object1, predicate, object2〉 triplets, reflecting the
structured representation of the image. Due to its various
applications, such as image captioning [1]–[3] and visual
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(b) Biased scene graph.

(c) Overly debiased scene graph.

(a) An image with bounding boxes.
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Fig. 1. (a) An image with bounding boxes. (b) Biased scene graph generated
by the biased model Motifs [10]. (c) Overly debiased scene graph generated
by Motifs equipped with the re-weighted loss. The predicates in red and
green are wrongly and correctly predicted, respectively. (d) Illustration of
the re-weighted sample distribution by the re-weighted classifier, where the
head predicate samples are less penalized than the tail ones when they are
misclassified. This propels the classification boundary to move from the solid
line to the dashed line, resulting in massive head predicate samples predicted
as the tail predicates.

question answering [4], [5], SGG has attracted tremendous
research efforts. Early studies mainly focus on using the
language priors [6]–[8] or modeling the object contextual in-
formation with advanced neural networks [9]–[12] to boost the
object and predicate prediction. Despite achieving promising
performance, they suffer from the biased predicate prediction
caused by the long-tailed data distribution, which is a staple of
the real world. In specific, in most SGG datasets (e.g., Visual
Genome [6]), only a few head predicate classes have abundant
training samples, while plenty of tail predicate classes possess
limited training data. Therefore, the model tends to predict
the head predicate classes (e.g., on, has, and near) rather
than the tail ones (e.g., lying on, using, and watching). As
shown in Fig. 1 (b), the scene graph generated from the biased
SGG model Motifs [10] is trivial and contains very limited
informative predicates.

To tackle this downside, some studies [13]–[17] tend to en-
hance the unbiased SGG with various debiasing methods, such
as re-sampling [16], [17] and re-weighting [14], [15]. To be
specific, the re-sampling strategy [16] aims to enhance the tail
predicate prediction by either over-sampling the tail predicate
samples or under-sampling the head ones. Nevertheless, the
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over-sampling increases the computation, and under-sampling
may lose the valuable samples for feature learning. Differently,
the re-weighting strategy works on revising the objective
function (e.g., cross-entropy loss) of the predicate prediction
by assigning the larger weights to the tail predicate classes
as compared with the head ones. Due to its simplicity and
efficiency, re-weighting has become a widely used debiasing
method. However, despite its remarkable performance in tail
predicate prediction, existing re-weighting based methods [14],
[15] mainly suffer from the poor performance on the head
predicate prediction and thus yield the overly debiased scene
graph. As illustrated in Fig. 1 (c), the generated scene graph
by Motifs equipped with the re-weighted loss involves several
unreasonable predictions, e.g., 〈arm, lying on, fence〉. This
may be due to the less penalty towards the misclassification
of the head predicates as compared to the tail ones, as
shown in Fig. 1 (d). Therefore, we argue that one key to
improve the performance of re-weighing methods is to rescue
the misclassified head predicates, while maintaining the tail
predicate prediction performance.

In fact, although the unweighted predicate classifier widely
used in the biased SGG models usually fails in the tail
predicate prediction, it always fits well on the head predicates,
owing to their corresponding abundant training samples. Intu-
itively, we can take advantage of the unweighted predicate
classifier (i.e., its superior prediction for head predicates) to
compensate for the poor head predicate prediction of SGG
models that adopt re-weighted classifiers, and hence alleviate
their overly debiased problems.

Towards this end, we propose a novel dual-biased predi-
cate predictor, termed DBiased-P, consisting of a re-weighted
primary classifier and an unweighted auxiliary classifier. The
former is trained by a re-weighted objective function and
biased to the tail predicates, while the latter is optimized by
the unweighted objective function and biased to the head pred-
icates. Notably, the re-weighted primary classifier is designed
to output the final predicate prediction, while the unweighted
classifier is introduced to regularize the former, especially its
head predicate prediction. In particular, we propose a head-
oriented soft regularization with the KL-divergence between
the masked prediction distribution of the re-weighted classifier
and that of the unweighted classifier. Based on this regulariza-
tion, a large number of misclassified head predicate samples
can be pulled back to the correct head predicate classes,
alleviating the overly debiased prediction of the re-weighted
classifier.

The main contributions are summarized as follows:
• We propose an effective DBiased-P for unbiased SGG,

which guarantees the tail predicate prediction with the
re-weighted classifier and promotes the head predicate
prediction via a head-oriented soft regularization from
the unweighted classifier. To the best of our knowledge,
we are the first to sew the re-weighted and unweighted
classifiers to boost the unbiased SGG.

• The proposed DBiased-P is model-free, which can be
flexibly applied to the last layer of the predicate clas-
sification network of existing SGG models to enhance
their unbiased predicate prediction.

• We conducted extensive experiments on Visual
Genome [6] and Open Image [18] datasets, and
the results indicate that our DBiased-P could achieve
a better trade-off between head and tail predicate
predictions. We release the source codes and model
parameters on GitHub1.

II. RELATED WORK

A. Scene Graph Generation.

SGG is able to provide a semantic abstract of the image,
which has received increasing attention in the computer vision
community. Early works [19]–[22] mainly focus on improving
the object representation to boost the predicate prediction.
Specifically, they resort to the message passing method [6],
recurrent sequential structured networks [10], [11], graph neu-
ral networks [23]–[25], or attention mechanism [26]–[28] to
model the contextual information among objects. For example,
Zellers et al. [10] emphasized the importance of contextual
information among objects by leveraging the statistic to the
object and predicate co-occurrence frequency, and introduced
the global context based framework to enhance the predicate
prediction. Though obvious improvements have been achieved
by these efforts, they suffer from the biased prediction due to
the long-tailed training data distribution.

B. Unbiased Scene Graph Generation.

Noticing the severe long-tail data distribution in the com-
monly used SGG dataset [6], Tang et al. [11] and Chen et
al. [29] started to focus on the unbiased SGG and introduced
the mean recall of each predicate to evaluate the unbiased
SGG. Thereby, various debiasing SGG methods emerged,
including causal inference [13], re-sampling [16], [17], and
re-weighting [15], [30] based methods. For example, Li et
al. [16] designed a bi-level data sampling method to adjust
the unbalanced training data. Though better performance has
been achieved, it suffers from the high calculation cost caused
by the image-level over-sampling. Tang et al. [13] employed
the counterfactual causality to disentangle the bias from the
representation. To enhance the prediction of the tail predicate
classes, Yan et al. [15] and Yu et al. [14] adopted the re-
weighting based methods to increase the loss penalty of tail
predicate classes. Though these debiasing methods improve
the performance on the recall of tail predicates, they lose
much performance on the head predicate classes. Therefore,
in this work, we aim to compensate for the performance of
head predicate classes to achieve a better trade-off prediction
between head and tail predicate classes.

C. Re-weighting.

Re-weighting is a branch of cost sensitive learning [31],
which is employed to balance the biased prediction based on
the unbalanced dataset by adjusting the loss cost for different
classes. As a classic re-weight method, weighting by inverse
class frequency [32] has been commonly adopted in many

1https://github.com/hanxjing/Dbiased-P.
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Fig. 2. The pipeline of current SGG models consists of three key components,
based on which we construct our overall framework.

fields, such as computer vision [33] and natural language
processing [34]. Its smoothed version of the inverse square
root of class frequency [32] is also widely adopted in many
tasks [35], [36]. Due to the concern that as the number of
samples increases, the additional benefit of a newly added data
point will diminish, Cui et al. [37] introduced the concept of
the effective number of samples, based on which adjust the
class frequency to assign the loss weight for different classes.

Although the re-weighting strategy has been employed in
SGG [13]–[15], the performance is far from satisfactory due
to the serious sacrifice on the head predicate prediction when
pursuing the improvement on tail predicates. Towards this end,
in this work, we aim to improve the head predicate prediction
of re-weighting methods in SGG.

III. METHODOLOGY

In this section, we first give the overview of the common
SGG pipeline we adopted, and then present our DBiased-P,
which is deployed on the last layer of the predicate classifica-
tion network in the SGG pipeline.

A. Pipeline of SGG Models

In this work, we adopt the mainstream pipeline used by
existing methods [10], [15], [25], [27], as shown in Fig. 2,
which consists of three components: 1) object detector, 2)
object classification network, and 3) predicate classification
network. For a given image I , we can get a set of object
proposal bounding boxes B = {bi}Ni=1 by the object detector,
the object predictions O = {oi|oi ∈ O}Ni=1 from the object
classification network, and the relationship R = {rij |rij ∈ R}
of different object pairs through the predicate classification
network. Formally, we use O and R to represent the set of
objects and predicate classes, respectively. We then generate
the scene graph G = {(oi, rij , oj)} of the image I according
to the following probability model:

Pr(G|I) = Pr(B|I)Pr(O|B, I)Pr(R|O,B, I), (1)

where Pr(B|I), Pr(O|B, I), and Pr(R|O,B, I) denote the
object detector, object classification network, and predicate
classification network, respectively.
Object Detector. The pre-trained Faster R-CNN [38] is
commonly adopted as the object detector in existing SGG
studies [10], [14], where each detected object oi can be
represented with a visual feature vi, an object embedding of
the initial detected object class ei, and a location feature bi

(i.e., the coordinates of the object bounding box).
Object Classification Network. Existing SGG studies [10],
[11] usually adopt the encoder-decoder based object classi-
fication network. The object encoder Encodero targets at
encoding the rich object contextual information into the object
representations, while the object decoder Decodero works on
predicting the refined object class, which can be formulated
as follows,{

X̂ = Encodero([vi; ei;bi]i=1,2,··· ,N ),

Ô = Decodero([x̂i]i=1,2,··· ,N ),
(2)

where X̂ = [x̂1, x̂2, · · · , x̂N ] and Ô = [ô1, ô2, · · · , ôN ]
denote the encoded object representations and refined object
label vectors of all the objects in the given image, respectively.
In existing SGG studies [10], [14], BiLSTMs [39] and multi-
head self-attention [40] are widely employed in Encodero and
Decodero. We denote the object embedding of the refined ob-
ject class as êi, which is employed in the following predicate
classification.
Predicate Classification Network. Similar to the object clas-
sification network, the predicate classification network also
includes a relationship encoder and a relationship decoder,
where the relationship encoder Encoderr focuses on encoding
the object contextual information with the refined object label,
and the relationship decoder Decoderr works on classifying
the predicate for object pairs with their union feature uij .
The predicate logit rij of object pair (oi, oj) is calculated as
follows, {

X = Encoderr([x̂i; êi]i=1,2,··· ,N ),

rij = Decoderr(xi,xj ,uij),
(3)

where X = [x1,x2, · · · ,xN ] denotes the encoded object
representations of all the objects in the given image. In existing
SGG studies [10], [14], the Encoderr usually has similar
network structure to Encodero, and Decoderr usually adopts
the fully-connected layers.

B. Dual-Biased Predicate Predictor

Affected by the unbalanced dataset in SGG task, the general
unweighted classifier is more likely to be biased to the head
predicate prediction. To promote the tail predicate prediction,
the re-weighted classifier adjusts the loss function by assigning
the larger weights to the tail predicate classes as compared
with the head ones. The re-weighted classifier increases the
misclassified cost of tail predicate classes and thus is more
likely to be biased to the tail predicate prediction. Intuitively,
they complement each other, and can be sewed together to
promote the unbiased SGG. In a sense, we can use one type
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Fig. 3. The framework of our dual-biased predicate predictor, which consists
of a re-weighted primary classifier and an unweighted auxiliary classifier. A
head-oriented soft regularization is conducted on the distributions of the two
classifier by the masked KL-divergence.

of classifier as the primary classifier for the final predicate
classification, and the other type of classifier as the auxiliary
classifier, whose output can be used to regularize the output
of the primary one. Compared with the quantity of the mis-
classified tail predicate samples of the unweighted classifier,
the number of the misclassified head predicate samples of
the re-weighted classifier is more prominent. Therefore, it is
more promising to use the head predicate predictions of the
unweighted classifier to regularize the re-weighting one, rather
than the inverse. Accordingly, as shown in Fig. 3, we devise
the DBiased-P with the re-weighted classifier as the primary
classifier, and the unweighted classifier as the auxiliary one to
provide head-oriented regularization.

Re-weighted Primary Classifier. We build the primary
classifier with a fully-connected layer. In a sense, we can
use different existing re-weighting methods to design the
objective function of the primary classifier. Here, we take the
frequently adopted one [32] that re-weights samples according
to the inverse class frequency as an example. Formally, the re-
weighted classifier can be formulated as follows,

rrw = frw(xi,xj , uij),

sprw =
exp (rprw)∑P
i=1 exp (r

i
rw)

,

Lrw(rrw) = −
P∑

p=1

wpyp log(sprw),

(4)

where frw denotes the fully connected layer for a re-weighted
classifier, and rrw = [r1rw, r

2
rw, · · · , rPrw] ∈ RP is the

predicted predicate logits of object pair (oi, oj)
2. sprw is the

predicted probability of the p-th predicate class by the re-
weighted classifier, while yp ∈ {0, 1} is the corresponding
ground truth label. P = |R| is the number of the predicate
classes. Lrw is the re-weighted cross-entropy loss and wp is
the loss weight of the p-th predicate class, which is defined
as follows,

wp = P
q−1
p∑P

i=1 q
−1
i

, (5)

where qp denotes the class frequency of the p-th predicate.
Head-oriented Regularization. We resort to the un-

weighted auxiliary classifier to provide the head-oriented

2For the convenient presentation and understanding, we omit the subscript
of ij in the following presentation.

regularization for the prediction of the re-weighted primary
classifier. Similarly, we use a fully-connected layer to construct
the unweighted auxiliary classifier. Differently, we use the
unweighted cross-entropy loss Luw as the objective function of
the unweighted classifier, which can be formulated as follows,

ruw = fuw(xi,xj , uij),

spuw =
exp (rpuw)∑P
i=1 exp (r

i
uw)

,

Luw(ruw) = −
P∑

p=1

yp log(spuw),

(6)

where fuw denotes the fully connected layer for the auxiliary
unweighted classifier. ruw denotes the predicted predicate
logits of the unweighted classifier, and spuw is the predicted
probability of the p-th predicate class by the unweighted
classifier.

Since the unweighted classifier fits well to the head pred-
icate classes, we take advantage of its prediction on head
predicates to regularize the re-weighted classifier. Specifically,
we resort to the KL-divergence to force the head predicate
prediction of the re-weighted classifier close to that of the
unweighted classifier. Towards this end, we first modify the
logits generated by these two classifiers by adding a mask to
their tail predicate predictions as follows,{

r̃rw = rrw +m,

r̃uw = ruw +m,
(7)

where m = [m1,m2, · · · ,mP ] ∈ RP is the mask to set tail
predicate logits to −∞, whose p-th entry is defined as:

mp =

{
−∞, if p ∈ Ptail,

0, otherwise,
(8)

where Ptail is the set of tail predicate classes, and we take
the same tail predicate definition as [16]. By adding the mask,
the tail predicate probabilities derived by softmax over the
modified logits r̃rw and r̃uw will be the same (i.e., zero).
Namely, we have:

s̃rw = softmax(r̃rw),
s̃uw = softmax(r̃uw),

Lkl(r̃rw, r̃uw) =

P∑
p=1

s̃puw log
s̃puw
s̃prw

,

(9)

where s̃rw and s̃uw are the modified predicate probabilities.
The tail predicate probabilities of both s̃rw and s̃uw are zero.
Therefore, we can directly adopt the KL-divergence loss Lkl

over s̃rw and s̃uw as the head-oriented regularization, to force
the head predicate probabilities of s̃rw to be similar to that of
s̃uw, and hence improve the head predicate prediction of the
re-weighted classifier.

Ultimately, the objective function of the DBiased-P is writ-
ten as follows,

L = Luw(ruw) + Lrw(rrw) + λLkl(r̃rw, r̃uw), (10)

where λ is the hyperparameter to control the head-oriented
regularization degree.
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Gradient Discussion. To intuitively understand the dual-
biased mechanism of our DBiased-P, we discuss the gradient
of the final objective function with respect to the logits rrw,
which is used for final predicate classification.

Given an object pair sample of the p-th predicate, we can
obtain the gradient of Lrw on rprw as follows,

∂Lrw

∂rprw
= wp(sprw − 1). (11)

Then if the given sample is misclassified, i.e., sp close to
0, it would mainly penalize the classifier according to the
predicate weight wp. Since the samples of tail predicates are
assigned with the large weights, i.e., wp in Eqn. (5), their
misclassification would penalize the classifier more heavily,
as compared to the head ones. Accordingly, the prediction
of the original re-weighted classifier without head-oriented
regularization tilts to the tail predicate classes, leading a large
amount of head predicate samples misclassified into the tail
predicate classes.

Regarding the regularization Lkl, we give its gradient on
rprw as follows,

∂Lkl

∂rprw
=

{
0, if p ∈ Ptail,

s̃prw − s̃puw, otherwise.
(12)

The gradient shows that the KL-divergence promotes the
classifier to mitigate the difference between the head predicate
probabilities of the re-weighted and unweighted classifiers.
Specifically, given a sample, if the unweighted classifier
predicts it as the p-th head predicate class with the higher
probability, i.e., s̃puw is larger, then the gradient would largely
encourage the re-weighted classifier to increase the corre-
sponding predicted probability, i.e., s̃prw, vice versa. As the
unweighted classifier is biased to the head predicate classes,
it usually predicts all the samples with higher probabilities
on head predicate classes. Moreover, according to our obser-
vations, in most case of the unweighted classifier, the head
predicate probabilities of the head predicate samples is usually
higher and more distinct than that of the tail predicate samples.
Accordingly, as shown in Fig. 4, the KL-divergence based
regularization on head predicate samples should be larger than
that on tail predicate samples. Thereby, our head-oriented soft
regularization is able to adaptively improve the head predicate
prediction and keep the tail predicate prediction.

In a word, our DBiased-P adaptively increases the regular-
ization towards the head predicates to balance their smaller
loss weights in the original re-weighted scenario.

IV. EXPERIMENTS

In this section, we conducted experiments to demonstrate
the effectiveness of our proposed DBiased-P.

A. Experiment Settings

Datasets. We present experimental results on two datasets:
Visual Genome (VG) [41] and Open Image [18].

VG is the most widely used benchmark for scene graph
generation. We use the pre-processed version of the dataset
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Fig. 4. An intuitive example of the KL-divergence based regularization. For
the head predicate sample on, the higher predicted probability of unweighted
classifier leads to a larger KL-divergence based regularization, which can
heavily regularize the incorrect prediction in the re-weighted classifier. For
the tail predicate sample lying on, the KL-divergence based regularization
is relatively smaller, which may not affect the correct prediction in the re-
weighted classifier.

from [6], which consists of 108K images, 150 object cat-
egories, and 50 predicate categories. We adopt the same
experimental settings with [10], [13], [14], i.e., 70% of the
images for training, 30% of that for testing, as well as sample
5K images from training set for validation.

Open Image is a large-scale dataset proposed by Google,
which provides the superior annotation for the scene graph
generation. Specifically, we adopt the Open Image V6, which
includes 134K images, 300 object categories, and 30 predicate
categories. We follow the same data split with [16], [27], and
obtain 126K images for training, 2K images for validation,
and 5K images for testing.

Similar to BGNN [16], in VG [41] dataset, we take the
predicate classes that contain less than 0.5K samples as the
tail classes. Thereby, VG dataset includes 28 head and 22 tail
predicate classes. While in Open Image [18] dataset, we take
the predicate classes that contain less than 0.2K samples as the
tail classes. Thereby, Open Image dataset includes 18 head and
12 tail predicate classes.
Evaluation Tasks. Following the previous works [6], [27],
[29], [44], we mainly adopt the following three tasks to
evaluate our model: 1) Predicate Classification (PredCls) takes
the ground truth object labels and bounding boxes to predict
the predicate classes; 2) Scene graph classification (SGCls)
takes the ground truth bounding boxes to predict the object
and predicate classes; and 3) Scene graph detection (SGDet)
predicts the scene graphs from images.
Evaluation Metrics. For VG dataset, following the existing
works [11], [16], [29], we adopt three types of metrics:
1) Recall@K (R@K) is the recall of all samples, which
is usually dominated by head classes in the long-tailed
dataset; 2) Mean recall@K (mR@K) is the average R@K
of all predicate classes, which validates the unbiased scene
graph generation and is mainly dominated by tail classes;
and 3) the mean of these two types of recall, denoted as
Mean, which reflects the balance among the correct and
unbiased generation. We adopt K ∈ {50, 100} in our ex-
periments. Mean=(R@50+R@100+mR@50+mR@100)/4. As
for Open Image dataset, we adopt the same evaluation
metrics in [12], [16], including mR@50, R@50, weighted
mean AP of relationships (wmAPrel), weighted mean
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TABLE I
PERFORMANCE COMPARISON IN PREDCLS, SGCLS, AND SGDET TASKS WITH VG DATASET IN TERMS OF MR@50/100, R@50/100, AND THEIR MEAN.
† DENOTES THAT THE METHOD EMPLOYS FASTER R-CNN WITH VGG-16. ∗ MEANS RE-SAMPLING IS APPLIED IN THIS MODEL. u INDICATES THAT THE

METHOD AIMS AT UNBIASED SGG. THE BEST RESULTS OF METHODS WITH THE SAME ENCODING METHOD ARE HIGHLIGHTED IN BOLDFACE.

Model PredCls SGCls SGDet
mR@50/100 R@50/100 Mean mR@50/100 R@50/100 Mean mR@50/100 R@50/100 Mean

IMP† [6] 9.8 / 10.5 59.3 / 61.3 35.2 5.8 / 6.0 34.6 / 35.4 20.5 3.8 / 4.8 20.7 / 24.5 13.5
Motifs† [10] 14.0 / 15.3 65.2 / 67.1 40.4 7.7 / 8.2 35.8 / 36.5 22.1 5.7 / 6.6 27.2 / 30.3 17.5
KERN† [29] 17.7 / 19.2 65.8 / 67.6 42.6 9.4 / 10.0 36.7 / 37.4 23.4 6.4 / 7.3 27.1 / 29.8 17.7
VCTree†u [11] 17.9 / 19.4 66.4 / 68.1 43.0 10.1 / 10.8 38.1 / 38.8 24.5 6.9 / 8.0 27.9 / 31.3 18.5
GPS-Net†u [27] 21.3 / 22.8 66.9 / 68.8 45.0 11.8 / 12.6 39.2 / 40.1 25.9 8.7 / 9.8 28.4 / 31.7 19.7
Schemata†u [42] 19.1 / 20.7 66.9 / 68.4 43.8 10.1 / 10.9 39.1 / 39.8 25.0 - - -
PCPL†u [15] 35.2 / 37.8 50.8 / 52.6 44.1 18.6 / 19.6 27.6 / 28.4 23.6 9.5 / 11.7 14.6 / 18.6 13.6
BGNN∗u [16] 30.4 / 32.9 59.2 / 61.3 46.0 14.3 / 16.5 37.4 / 38.5 26.7 10.7 / 12.6 31.0 / 35.8 22.5
DT2-ACBS∗u [17] 35.9 / 39.7 23.3 / 25.6 31.1 24.8 / 27.5 16.2 / 17.6 21.5 22.0 / 24.4 15.0 / 16.3 19.4
Motifs [10] 4.6 / 15.8 66.1 / 68.0 41.1 8.0 / 8.5 39.3 / 40.1 24.0 5.8 / 7.8 32.5 / 37.3 20.7
Motifs-EBMu [43] 18.0 / 19.5 65.2 / 67.3 42.5 10.2 / 11.0 39.2 / 40.0 25.1 7.7 / 9.3 31.7 / 36.3 21.3
Motifs-TDEu [13] 25.5 / 29.1 46.2 / 51.4 38.1 13.1 / 14.9 27.7 / 29.9 21.4 8.2 / 9.8 16.9 / 20.3 13.8
Motifs-CogTreeu [14] 26.4 / 29.0 35.6 / 36.8 32.0 14.9 / 16.1 21.6 / 22.2 18.7 10.4 / 11.8 20.0 / 22.1 16.1
Motifs-DBiasedu (ours) 34.7 / 36.6 58.8 / 60.7 47.7 20.3 / 21.2 36.5 / 37.4 28.9 14.9 / 17.5 29.4 / 33.9 24.0
VCTree [11] 14.9 / 16.1 66.2 / 68.1 41.3 7.5 / 7.9 40.5 / 41.4 24.3 5.7 / 6.9 31.5 / 36.2 20.1
VCTree-EBMu [43] 18.2 / 19.7 64.0 / 65.8 41.9 12.5 / 13.5 44.7 / 45.8 29.1 7.7 / 9.1 31.4 / 35.9 21.0
VCTree-TDEu [13] 25.4 / 28.7 47.2 / 51.6 38.2 12.2 / 14.0 25.4 / 27.9 19.9 9.3 / 11.1 19.4 / 23.2 15.8
VCTree-CogTreeu [14] 27.6 / 29.7 44.0 / 45.4 36.7 18.8 / 19.9 30.9 / 31.7 25.3 10.4 / 12.1 18.2 / 20.4 15.3
VCTree-DBiasedu (ours) 34.5 / 36.4 59.1 / 61.0 47.8 20.4 / 21.3 36.8 / 37.7 29.1 14.3 / 17.0 29.5 / 34.1 23.7
SG [14] 18.5 / 20.2 65.0 / 66.9 42.7 11.5 / 12.3 39.1 / 39.9 25.7 7.7 / 9.0 30.3 / 33.3 20.1
SG-CogTreeu [14] 28.4 / 31.0 38.4 / 39.7 34.4 15.7 / 16.7 22.9 / 23.4 19.7 11.1 / 12.7 19.5 / 21.7 16.3
SG-DBiasedu (ours) 37.7 / 40.2 55.5 / 57.4 47.7 22.0 / 22.9 34.1 / 34.9 28.5 16.4 / 19.7 27.0 / 31.4 23.6

0

0.2

0.4

0.6

0.8

1 Motifs
Motifs-TDE
Motifs-DBiased (ours)

Fig. 5. R@100 of each predicate in Motifs, Motifs-TDE, and Motifs-DBiased in PredCls task on VG dataset.

TABLE II
PERFORMANCE COMPARISON IN SGDET TASK WITH OPEN IMAGE

DATASET IN TERMS OF MR@50, R@50, WMAPrel , WMAPphr , AND
SCOREwtd . THE BEST PERFORMANCE IS HIGHLIGHTED IN BOLDFACE.

model mR@50 R@50 wmAP scorewtdrel phr
VCTree [11] 33.9 74.1 34.2 33.1 40.2
Motifs [10] 32.7 71.6 29.9 31.6 38.9
TDE [13] 35.5 69.3 30.7 32.8 39.3
BGNN [16] 40.5 75.0 33.5 34.2 42.1
Motifs-DBiased 42.1 74.6 34.3 34.4 42.3

AP of phrase (wmAPphr), and the final weighted score
(scorewtd), to evaluate the generated scene graph. Ac-
cording to the Open Image challenge [18], scorewtd =
0.2×R@50+0.4×wmAPrel+0.4×wmAPphr.
Implementation Details. We use a pre-trained Faster R-CNN
with ResNeXt-101-FPN provided by [13] and [16] as object
detectors for VG and Open Image datasets, respectively. Ob-
ject class embeddings are 200-D word embeddings generated
by Glove [45]. Following the SGG method CogTree [14],
we adopt the re-weighting method of inverse effective fre-
quency (IEF) [37] in our DBiased-P, where the re-weighting

factor [37] β is set to 0.99996. We employ SGD with a
momentum of 0.9 as the optimizer. Batch size and initial
learning rate are consistently set to 10 and 0.001 for all three
tasks, respectively. We adopt the same warm-up and decayed
strategy as [13], and each training procedure lasts for 50,000
steps. The hyperparameter λ is set to 0.5. All our experiments
are conducted with a RTX2080 Ti GPU.

As our DBiased-P is model-free and is designed to deploy
on the last layer of the predicate classification network of
existing SGG models, the object encoder Encodero, object
decoder Decodero, and relationship encoder Encoderr of our
method depend on the adopted SGG backbone for the sake
of fair comparison. Specifically, we deploy our DBiased-P
on three different SGG models, including Motifs [10], VC-
Tree [11], and SG [14], denoted as Motifs-DBiased, VCTree-
DBiased, and SG-Debiased, respectively. As the BiLSTM [39],
TreeLSTM [46], and Transformer [40] networks are respec-
tively employed in Motifs, VCTree, and SG, we accordingly
adopt the BiLSTM, TreeLSTM, and Transformer networks as
the Encodero, Decodero, and Encoderr of Motifs-DBiased,
VCTree-DBiased, and SG-Debiased, respectively. In addition,
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TABLE III
PERFORMANCE COMPARISON WITH DIFFERENT RE-WEIGHTING METHODS ON VG DATASET. THE BEST PERFORMANCE IS HIGHLIGHTED IN BOLDFACE.

Model PredCls SGCls SGDet
R@50/100 mR@50/100 Mean R@50/100 mR@50/100 Mean R@50/100 mR@50/100 Mean

Motifs 66.1 / 68.0 4.6 / 15.8 41.1 39.3 / 40.1 8.0 / 8.5 24.0 32.5 / 37.3 5.8 / 7.8 20.7
Motifs-IF 39.7 / 41.9 37.0 / 38.9 39.4 24.8 / 25.9 21.3 / 22.5 23.6 19.4 / 23.1 14.7 / 17.4 18.7
Motifs-DBiased(IF) 46.7 / 49.0 37.3 / 39.2 43.1 29.2 / 30.2 21.8 / 22.8 26.0 21.2 / 25.2 15.5 / 18.0 20.0
Motifs-ISF 58.4 / 60.4 30.2 / 32.2 45.3 36.2 / 37.1 18.6 / 19.6 27.9 28.1 / 32.9 14.3 / 17.0 23.1
Motifs-DBiased(ISF) 60.6 / 62.5 30.1 / 32.2 46.4 37.7 / 38.6 18.5 / 19.5 28.6 29.7 / 34.2 14.2 / 16.7 23.7
Motifs-IEF 56.9 / 58.8 34.7 / 36.5 46.7 35.0 / 35.9 19.9 / 21.1 28.0 28.1 / 32.6 14.9 / 17.6 23.3
Motifs-DBiased(IEF) 58.8 / 60.7 34.7 / 36.6 47.7 36.5 / 37.4 20.3 / 21.2 28.9 29.4 / 33.9 14.9 / 17.5 24.0

same with Motifs, VCTree, and SG, the general cross-entropy
losses are employed in object classification networks to refine
the object class.

B. Comparison to Existing Methods

We compare our DBiased-P with the existing SGG models
to evaluate the ability of unbiased scene graph generation.
Besides, we also compare with the mainstream re-weighting
methods to demonstrate the effectiveness of our DBiased-P on
them.
Comparison with SGG Models. For fair comparison, we
compare our model with the model-free unbiased methods
based on the same encoding method, including EBM [43],
TDE [13], and CogTree [14]. We also compare our model with
other biased and unbiased SGG methods, such as BGNN [16]
and DT2-ACBS [17], which are state-of-the-art re-sampling
based methods. Table I and Table II show the performance
comparison of our methods and baseline methods on VG
and Open Image datasets, respectively. In Table I, we report
the results of baseline methods according to their papers. In
Table II, we report the results of baseline methods according
to [16].

To begin with, it is worth noting that the decrease on
the overall recall (R@K) is hard to avoid when pursuing
the increase on the mean recall of all predicates (mR@K)
on a biased dataset. From Table 1, we have the following
comparisons and observations: 1) Compared with the three
model-free debiasing methods (i.e., TDE, CogTree, EBM)
on all three encoding baseline methods (i.e., Motifs, VC-
Tree, and SG), our DBiased-P (i.e., Motifs-DBiased, VCTree-
DBiased, and SG-DBiased) achieves the best mR@50/100 and
Mean. This reflects that our DBiased-P can largely improve
mR@50/100, and keep satisfactory results on R@50/100 at
the same time. 2) Compared with all other baseline methods,
our DBiased-P achieves the best Mean, which demonstrates
the superiority of our DBiased-P in balancing the correct and
unbiased SGG. And 3) compared with DT2-ACBS, which
achieves better performance in terms of mR@50/100 in SGCls
and SGDet tasks, our DBiased-P has obvious advantages
in terms of R@50/100 and Mean. Moreover, DT2-ACBS
achieves the worst R@50/100 in all three evaluation tasks.
The underlying reason is that the sampling strategies of DT2-
ACBS sacrifice much overall recall to increase the mean
recall. Consequently, though DT2-ACBS largely improves the
tail predicate prediction, the prediction of the head predicate
classes that occupy most samples in the dataset is decreased.
In other word, the accuracy of the generated scene graph (i.e.,

R@50/100) by DT2-ACBS is inferior to our DBiased-P. In
addition, as DT2-ACBS employs different sampling strategies
with two training stages in predicate prediction, our DBiased-P
is more effective and simpler to implement.

Besides, from Table II, we observe that our DBiased-P
achieves better performance than the baseline methods in terms
of almost all metrics, indicating that our model can achieve
better performance on various datasets. However, compared
with BGNN, our DBiased-P achieves better mR@50 and
worse R@50 on both VG and Open Image datasets. One
possible explanation is that the over-sampling strategy used in
BGNN are somehow weaker regarding the tail performance,
but stronger in retaining the head performance, as compared
to our DBiased-P. Ovearll, our DBiased-P performs better than
BGNN in terms of the Mean metric. Notably, different from
BGNN that has the multi-stage graph refinement and over-
sampling of the image, DBiased-P is simple to implement and
model-free.

To obtain a deep insight, we compare our DBiased-P with
both biased Motifs and unbiased Motifs-TDE methods in each
predicate class. From Fig. 5, we observe that: 1) compared
with the biased Motifs, our Motifs-DBiased is able to signifi-
cantly improve the performance on most of the tail predicate
classes with a slight decrease on that of the head ones; and 2)
compared with the unbiased Motifs-TDE, our Motifs-DBiased
performs better on most of the predicate classes, including
both the head predicate classes and some tail predicate classes.
One possible reason is that although TDE can enhance the
tail predicate prediction by disentangling the environmental
bias, it may also remove some useful bias that benefits for
the head predicate prediction, resulting the decrease of the
head predicate prediction in Motifs-TDE. This reflects that our
DBiased-P is more effective than removing the environmental
bias in boosting the unbiased SGG. These two observations
indicate that our DBiased-P is able to achieve a better trade-
off between head and tail predicate prediction.
Comparison with Re-weighting Methods. To demonstrate
the generalization capability of our DBiased-P on re-weighting
methods, we adopt three commonly used re-weighting meth-
ods, including inverse class frequency (IF) [32], inverse square
root of class frequency (ISF) [32], and inverse effective
number (IEF) [37]. Then, based on Motifs, we have three vari-
ants, denoted as Motifs-DBiased(IF), Motifs-DBiased(ISF),
and Motifs-DBiased(IEF), respectively. For comparison, we
introduce three baseline methods: Motifs-IF, Motifs-ISF, and
Motifs-IEF, which are directly deployed on the Motifs, respec-
tively.
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TABLE IV
ABLATION STUDY ON VG DATASET IN TERMS OF R@50/100, MR@50/100, AND MEAN IN SGDET, SGCLS, AND PREDCLS TASKS.

Model PredCls SGCls SGDet
R@50/100 mR@50/100 Mean R@50/100 mR@50/100 Mean R@50/100 mR@50/100 Mean

Motifs 66.1 / 68.0 4.6 / 15.8 41.1 39.3 / 40.1 8.0 / 8.5 24.0 32.5 / 37.3 5.8 / 7.8 20.7
Motifs-DBiased-w/o-Lkl 57.2 / 59.0 34.6 / 36.6 46.9 35.0 / 36.1 20.0 / 21.2 28.1 28.5 / 32.8 14.9 / 17.8 23.5
Motifs-HardR 50.2 / 52.1 38.7 / 40.8 45.4 35.0 / 35.9 21.3 / 22.3 28.6 28.0 / 32.2 15.6 / 18.6 23.6
Motifs-TailR 65.1 / 66.8 17.8 / 19.4 42.3 39.8 / 40.6 10.7 / 11.3 25.6 31.3 / 35.9 10.1 / 11.0 22.1
Motifs-DBiased 58.8 / 60.7 34.7 / 36.6 47.7 36.5 / 37.4 20.3 / 21.2 28.9 29.4 / 33.9 14.9 / 17.5 24.0
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Fig. 6. R@100 and mR@100 of Motifs-DBiased(IF), Motifs-DBiased(ISF),
and Motifs-DBiased(IEF) in PredCls task with different λ.

Table III shows the performance comparison, and we find
that: 1) for each re-weighting method, combined with our
DBiased-P, Motifs achieves better performance on R@50/10,
while maintaining the similar performance on mR50/100,
which leads to the better performance on the Mean. As the
R@50/100 and mR@50/100 are mainly dominated by the
head and tail predicate classes predictions, respectively, we
can draw the conclusion that our proposed head-oriented soft
regularization is able to enhance the prediction of the head
predicate classes without hurting that of the tail ones of the
re-weighted classifier. 2) Although Motifs-IF achieves the best
mR@50/100, compared with Motifs-ISF and Motifs-IEF, its
performance on R@50/100 is the worst. The reason may be
that compared with ISF and IEF, IF re-weights the predicates
most severely, which benefits the tail predicate prediction, but
results in more misclassifications of head predicate samples in
Motifs-IF. 3) Our DBiased-P achieves the largest improvement
for the re-weighting method IF. This indicates that our model
is more effective when the proportion of the misclassified head
predicate samples in the tail predicate classes is large. And 4)
Motifs-DBiased(ISF), equipped with only a naive re-weighting
method, also surpasses all the baseline methods in Table I in
terms of Mean. This confirms the effectiveness of our head-
oriented regularization in balancing the head and tail predicate
prediction.

C. Ablation Study

To thoroughly investigate the head-oriented soft regular-
ization in our DBiased-P, we introduce the following three
baseline methods:

1) Motifs-DBiased-w/o-Lkl: to investigate the impact of
the head-oriented soft regularization, we disable it from our
DBiased-P, by removing the term Lkl in the final objective
function in Eqn.(10).

2) Motifs-HardR: to justify the effectiveness of the soft
regularization, we replace the logits ruw with the one-hot
distribution, where only the ground truth predicate has the

probability of one, otherwise zeros, to provide the head-
oriented hard regularization.

3) Motifs-TailR: opposite to our head-oriented regulariza-
tion towards the re-weighted classifier, this method uses the tail
predicate predictions of the re-weighted classifier to regularize
that of the unweighted classifier.

The results are shown in Table IV, from which we observe
that: 1) our Motifs-DBiased consistently achieves better per-
formance than Motifs-DBiased-w/o-Lkl in terms of the Mean,
which demonstrates the effectiveness of the head-oriented
regularization. Meanwhile, we also find that the performance
of Motifs-DBiased-w/o-Lkl is close to that of Motifs-IEF (see
Table III), which only consists of a re-weighted classifier. This
reflects that without the regularization conducted by Lkl, the
unweighted classifier hardly affects the re-weighted one. 2)
It is unexpected that compared with Motifs-DBiased-w/o-Lkl,
Motifs-HardR unexpectedly worsens the R@50/100, reflect-
ing that Motifs-HardR further aggravates the head predicate
predictions, which goes against our target of enhancing the
head predicate predictions. The underlying reason may be that
the zero elements of the one-hot ground truth label vector
may largely depress the prediction of the other head predicate
classes besides the ground truth one, which may affect the
overall head predicate predictions of the classifier. And 3) the
improvement of Motifs-TailR over Motifs on mR@50/100 is
less than that of Motifs-DBiased over Motifs. This implies that
the tail-oriented regularization from the re-weighted classifier
to the unweighted classifier is not as effective as the opposite
one used in our DBiased-P.

D. Parameter Analysis
To investigate the effect of the regularization degree (i.e.,

λ), we conduct experiments with different λ on our DBiased-
P configured with three kinds of re-weighting methods
(i.e., Motifs-DBiased(IF), Motifs-DBiased(ISF), and Motifs-
DBiased(IEF)).

The results are shown in Fig. 6, and we observe that:
1) with the growing of the value of λ, the performance of
R@100 in the three methods gradually increases, while that
of mR@100 keep stable before λ = 0.5 and then decrease.
It demonstrates that with the reasonable regularization degree,
i.e., λ = 0.5, our proposed head-oriented soft regularization
is able to enhance the head predicate prediction and hardly
hurt that of the tail predicate. And 2) the improvement of
Morifs-DBiased(IF) on R@100 is more obvious than that of
Morifs-DBiased(ISE) and Morifs-DBiased(IEF) on R@100,
which reconfirms that our DBiased-P is more effective when
the proportion of the misclassified head predicate samples in
the tail predicate classes is large.
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Fig. 7. Scene graph examples generated by Motifs, Motifs-IEF, and Motifs-DBiased in PredCls task with respect to R@20. Predicates in green indicate that
the corresponding relationships are captured by the top 20 predicted places. Predicates in red denote the misclassified or uncaught ground truth relationships.
Predicates in purple denote the reasonable captured relationships, but are not annotated as the ground truth.

E. Qualitative Results

To obtain a deep insight, we visualize four qualitative
results in Fig. 7. To conduct a fair comparison, we equip
our DBiased-P in Motifs (i.e., Motifs-DBiased) and qualita-
tively compare with the general biased SGG method (i.e.,
Motifs) as well as the advanced re-weighting SGG method
(i.e., Motifs-IEF). From Fig. 7, we can observe that: 1)
the scene graphs generated by our Motifs-DBiased contain
more informative predicate predictions than those generated
by Motifs, e.g., 〈hand, holding, food〉 in the first exam-
ple, 〈women, riding, bike〉 in the second example, and
〈woman, laying on, bed〉 in the third example. 2) The scene
graphs generated by our Motifs-DBiased have more accurate
head predicate predictions than those generated by Motifs-
IEF, e.g., 〈basket, on, bike〉 in the second example and
〈light, on, table〉 in the fourth example. This reconfirms that
our DBiased-P can improve the head predicate prediction of
the re-weighting method. And 3) as for the limitation, although
our DBiased-P can improve the head predicate prediction of
the re-weighting method, the improvement is limited and the
head predicate prediction of DBiased-P is still inferior to that
of Motifs. For example, 〈bowl, on, bed〉 in the third example
and 〈hand, near, laptop〉 in the fourth example are still not
captured by Motifs-DBiased. The underlying reason is that

our DBiased-P is based on the re-weighting method, where
the head predicate prediction is intrinsically weak. Moreover,
we set the head-oriented regularization degree (i.e.. λ) to
control our DBiased-P enhancing the head predicate prediction
of the re-weighting method and also maintaining their tail
predicate prediction, which makes the improvement on the
head predicate prediction limited.

V. CONCLUSION AND FUTURE WORK

In this work, we propose a DBiased-P to boost the predicate
prediction for unbiased SGG, which guarantees the tail pred-
icate prediction with the re-weighted classifier and promote
the head predicate prediction via a head-oriented soft regular-
ization from the unweighted classifier. Experiments conducted
on VG and Open Image datasets indicate that our DBiased-P
could achieve a better prediction trade-off between head and
tail predicate classes. In addition, experiments conducted with
different re-weighting methods demonstrate that our proposed
head-oriented soft regularization is able to enhance the head
predicate prediction without hurting the tail ones of the re-
weighted classifier. In this work, we mainly rely on the metric
Mean to measure the balance between the correct and unbiased
SGG. In the future, we plan to design a more reasonable
evaluation metric to explicitly define the trade-off between
head and tail predicate predictions.
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