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ABSTRACT

Owing to the recent advances in the multimedia processing domain

and the publicly available large-scale real-world data provided

by online fashion communities, like the IQON and Chictopia,

researchers are enabled to investigate the automatic clothing

matching solutions. In a sense, existing methods mainly focus on

modeling the general item-item compatibility from the aesthetic

perspective, but fail to incorporate the user factor. In fact, aesthetics

can be highly subjective, as different people may hold different

clothing preferences. In light of this, in this work, we attempt to

tackle the problem of personalized compatibility modeling from

not only the general aesthetics but also the personal preference

perspectives. In particular, we present a personalized compatibility

modeling scheme GP-BPR, comprising of two essential components:

general compatibility modeling and personal preference modeling,

which characterize the item-item and user-item interactions,

respectively. In particular, due to the concern that both the

modalities (e.g., the image and context description) of fashion items

can deliver important cues regarding user personal preference, we

present a comprehensive personal preference modeling method.

Moreover, for evaluation, we create a large-scale dataset, IQON3000,

from the online fashion community IQON. Extensive experiment

results on IQON3000 verify the effectiveness of the proposed

scheme. As a byproduct, we have released the dataset, codes, and

involved parameters to benefit other researchers.
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Figure 1: Examples of users’ outfit compositions.
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1 INTRODUCTION

Recent years have witnessed the flourish of the online fashion

industry, whose total global value is up to 3 trillion US dollars,

amounting to two percent of the world’s Gross Domestic Product1.

The huge economic value reflects people’s growing demand for

dressing. In fact, clothing matching, to coordinate complementary

fashion items such as the tops and bottoms to make proper outfits,

has become an indispensable aspect of people’s daily life. Owing

to the recent proliferation of fashion-oriented online communities

(e.g., IQON2 and Chictopia3), where users can create their favorite

outfits by collocating the complementary fashion items and share

with the public, as shown in Figure 1, many research efforts have

been dedicated to exploring the automatic clothing matching task.

In a sense, most of the existing work attempts to tackle the clothing

matching problem by modeling the compatibility between fashion

items from the aesthetic perspective based on the visual and

contextual contents of fashion items, but overlooks the role of

user factor. Indeed, aesthetics can be rather subjective, as different

people may have different tastes in clothing matching. For example,

for the same fashion item “high-neck pullover” occurred in the first

1https://fashionunited.com/global-fashion-industry-statistics/.
2https://www.iqon.jp/.
3http://www.chictopia.com/.
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outfit of all three users in Figure 1, user1 coordinates it with the

“point button tweed tight skirt”, while user3 prefers to match it with

the “check flare skirt with belt”. Consequently, it is inappropriate

to ignore the user context factor and access the compatibility

between fashion items universally across different individuals. To

bridge this gap, this work aims to tackle the personalized clothing

matching problem, where without loss of generality, we focus on

the compatibility modeling between the top and bottom while

considering the user context.

However, the personalized compatibility modeling between fash-

ion items is non-trivial due to the following challenges. 1) Although

there are many public datasets towards the general compatibility

modeling and personalized fashion item recommendation tasks,

respectively, there is a lack of the large-scale benchmark dataset for

personalized compatibility modeling. Accordingly, how to construct

a large-scale benchmark dataset to facilitate the evaluation of

the proposed method constitutes a tough challenge. 2) How to

seamlessly encode the user preference on clothing matching into

the personalized compatibility modeling between fashion items

and thus enable the matching results not only to meet the common

matching patterns but also to cater to the user personal taste

poses another challenge for us. And 3) fashion items can be

comprehensively characterized by multiple modalities, such as

the visual images and textual descriptions, both of which may

convey important cues on user preferences. For example, the visual

signal can reveal the intuitive features that the user prefers, like

the color and shape, while the contextual modality may deliver the

user preferred item brand or fabric. Therefore, how to fully take

advantage of themulti-modal data in the context of the personalized

clothing matching is a crucial challenge.

To address the aforementioned challenges, we present a

personalized compatibility modeling scheme for clothing matching,

named as GP-BPR, as shown in Figure 2, which is able to

measure the compatibility between fashion items from not only the

general aesthetics but also the personal preference perspectives. In

particular, GP-BPR consists of two essential components: general

compatibility modeling and personal preference modeling. The

content-based general compatibility modeling works on learning

the latent compatibility space shared by complementary items to

characterize the item-item interactions towards clothing matching.

Meanwhile, the personal preference modeling focuses on exploiting

the latent preference factor based on the multi-modal data of

fashion items and hence captures the user-item interactions

comprehensively. Ultimately, based on the Bayesian Personalized

Ranking (BPR) framework [32], GP-BPR jointly integrates the

general compatibility and personal preference modeling. To

facilitate the evaluation, we construct a large-scale dataset from the

online fashion community IQON, which comprises 308, 747 outfits

created by 3, 568 users with 672, 335 fashion items.

Our main contributions can be summarized in threefold:

• We present a personalized compatibility modeling scheme

for personalized clothing matching, GP-BPR, which is

able to jointly model the general (item-item) compatibility

and personal (user-item) preference. To the best of our

knowledge, this is the first to incorporate user factor in

clothing matching.

• Considering that both modalities of fashion items can deliver

significant signals regarding user preferences, we introduce

a comprehensive personal preference modeling scheme by

integrating the multi-modal data of fashion items.

• Extensive experiments conducted on the real-world dataset

demonstrate the superiority of the proposed scheme over the

state-of-the-art methods. As a byproduct, we released the

codes and involved parameters to benefit other researchers4.

The remainder of this paper is structured as follows. Section 2

briefly reviews the related work. The proposed GP-BPR is

introduced in Section 3. Section 4 details the dataset construction.

Section 5 presents the experimental results and analyses, followed

by our concluding remarks and future work in Section 6.

2 RELATEDWORK

Owing to the recent booming of the fashion industry, increasing

research attention from both the computer vision and multimedia

communities has been paid to the fashion domain, especially the

clothing matching problem [6–8, 22, 36], which is usually cast as

the compatibility modeling task between complementary fashion

items. For example, Li et al. [22] proposed an outfit quality predictor

with the multi-modal multi-instance deep learning based on item

appearances. In addition, Song et al. [36] introduced a content-

based neural scheme towards the compatibility modeling between

fashion items based on their multi-modal data. Later, Yang et

al. [42] presented a translation-based neural fashion compatibility

modeling framework, which jointly optimizes the fashion item

embeddings and category-specific complementary relations in an

end-to-end manner. Moreover, noticed that the fashion domain has

accumulated various valuable knowledge that can be helpful to

guide the compatibility modeling, Song et al. [35] shed light on

integrating the rich fashion domain knowledge to the pure data-

driven learning, where a neural compatibility modeling scheme

with attentive knowledge distillation was presented. Although

existing efforts have achieved compelling success, they mainly

focused on modeling the compatibility between fashion items

purely based on the general item-item compatibility and overlooked

the user factor in the compatibility modeling, which is the major

concern of our work.

In addition, personalized recommendation in fashion domain

also gains great research attention [3, 12, 40]. In particular, existing

personalized recommendation work in fashion domain [10, 13,

39] mainly utilized the matrix factorization (MF) framework to

model user preferences based on their feedback with real-world

datasets. For example, Hu et al. [13] proposed a functional tensor

factorization model aiming to tackle the problem of personalized

outfit recommendation based on a dataset comprising of 150

users. Although this method is effective in the whole outfit

recommendation, the cold start problem constitutes a remaining

issue that worths further exploring. Towards this end, He et al. [10]

introduced a scalable matrix factorization model that incorporates

the visual signal of items into the user preference predictors

to fulfil the recommendation task. In a sense, existing efforts

focus on exploring the latent user-item interactions to tackle the

personalized recommendation problems. Beyond that, in this work,

4https://anonymity2019.wixsite.com/gp-bpr/.
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Figure 2: Illustration of the proposed scheme. The general compatibility modeling aims to learn the visual and contextual

latent embedding of the items. The personal compatibility modeling focuses on exploiting the latent user-item interaction

factors to capture the user preference. These two components are integrated by the BPR framework.

we aim to fulfil the task of personalized clothing matching, where

both the user-item preference and item-item compatibility need to

be well explored.

3 METHODOLOGY

In this section, we first give the problem formulation and then detail

the proposed personalized compatibility modeling scheme.

3.1 Problem Formulation

Formally, we first declare some notations.We use bold capital letters

(e.g., X) and bold lowercase letters (e.g., x) to denote matrices and

vectors, respectively. We employ the non-bold letters (e.g., x) to
represent scalars and Greek letters (e.g., β) to denote the parameters.

If not clarified, all vectors are in the column forms.
��A��

F
denotes

the Frobenius norm of matrix A.

Suppose we have a set of users U = {u1,u2, · · · ,uM }, a

set of tops T = {t1, t2, · · · , tNt
} and a set of bottoms B =

{b1,b2, · · · ,bNb
}, where M , Nt and Nb denote the total numbers

of users, tops and bottoms, respectively. Each user um is associated

with a set of historically composed top-bottom pairs Om =

{(tim1 ,bj
m
1
), (tim2 ,bj

m
2
), · · · , (tim

Nm
,bjm

Nm
)}, where im

k
∈ [1, 2, · · · ,Nt ]

and jm
k

∈ [1, 2, · · · ,Nb ] refer to the index of the top and bottom. For

each ti (bi ), we use v
t
i (v

b
i ) ∈ R

Dv and cti (c
b
i ) ∈ R

Dc to represent its

visual and contextual embeddings, respectively. Dv and Dc denote

the dimensions of the corresponding embeddings.

As a matter of fact, different people may have different

fashion tastes and thus prefer different clothing items to make

favorable outfits. Accordingly, in this work, we aim to tackle the

essential compatibility modeling between fashion items for clothing

matching by taking the user factor into account. Without loss

of generality, we particularly investigate the problem of “which

bottom would be preferred by the user to match the given top". Let

pmij denote the preference of the user um towards the bottom bj for

top ti , based onwhich we can generate a personalized ranking list of
bottoms bj ’s for a given top ti and hence solve the practical problem
of personalized clothing matching. In particular, to accurately

measure pmij , we focus on devising a personalized compatibility

modeling network F , which is capable of compiling the user

preference context into the compatibility modeling between fashion

items as follows,

pmij = F (ti ,bj ,um |ΘF ), (1)

where ΘF refers to the to-be-learned model parameters.

3.2 GP-BPR

In a sense, towards personalized clothing matching (e.g., matching

a bottom for a user’s top), it is natural to incorporate both the item-

item compatibility and the user-item preference. In light of this, we

measure the user preference towards a bottom for a given to-be-

matched top based on both the general compatibility modeling and

the personal preference modeling. Formally, we have,⎧⎪⎪⎪⎨⎪⎪⎪⎩
pmij = μ · si j + (1 − μ) · cmj ,

si j = G(ti ,bj |ΘG ),

cmj = P(um,bj |ΘP ),

(2)

where G and P correspond to the general compatibility modeling

and personal preference modeling networks, respectively. ΘG
and ΘP are the corresponding model parameters. si j denotes the
general compatibility between the top ti and bottom bj , while cmj

represents the personal preference of user um towards the bottom

bj . μ is the non-negative tradeoff parameter to control the relative

importance of both components.
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Figure 3: Workflow of the proposed personalized compati-

bility modeling framework.

3.2.1 General Compatibility Modeling. To measure the general

compatibility between fashion items, similar to [36], we argue that

there should be a latent space where the compatibility between

complementary fashion items can be well captured by the distance

between their latent representations. In fact, the general item-

item compatibility between fashion items involves complicated

attribute interactions, ranging from the color interaction to the

clothing category interaction. To learn such highly non-linear

interactions, we adopt the multi-layer perceptron (MLP), owing

to its superior performance in various representation learning

tasks [5, 25, 41]. It is worth noting that each fashion item can

be associated with multiple modalities, such as the visual image

and contextual information, like the brief description and category

metadata. Both modalities coherently characterize the same fashion

item. For example, the color and shapes of fashion items can be

reflected by the visual modality, and the category and material

information can be delivered by the contextual modality. Therefore,

to enhance the general compatibility between fashion items, we

utilize bothmodality signals. Here, we take the visual representation

learning of tops as an example. Given the i-th top v
t
i , we have,{

h
t
i1 = s(Wt

1v
t
i + b

t
1),

h
t
ik

= s(Wt
k
h
t
i (k−1) + b

t
k
), k = 2, · · · ,K,

(3)

where h
t
ik

denotes the hidden representation, Wt
k
and b

t
k
, k =

1, · · · ,K , are the weight matrices and biases, respectively. s : R �→ R

is the non-linear activation function applied element wise5.We treat

the output of the K-th layer as the latent visual embedding for the

top, i.e., ṽti = h
t
iK

∈ RDv0 , where Dv0 denotes the dimensionality

of the latent compatibility space.

In the similar manner, we can also derive the latent contextual

embedding for the top ti , and the visual and contextual embeddings

for the bottom bj as c̃
t
i , ṽ

b
j and c̃

b
j , respectively. Thereafter, to

comprehensively measure the general compatibility, we define,

si j = π (ṽti )
T
ṽ
b
j + (1 − π )(c̃ti )

T
c̃
b
j , (4)

where π is the non-negative trade-off parameter, calibrating the

relative importance of the modalities. si j denotes the general

compatibility between the top ti and bottom bj .

3.2.2 Personal Preference Modeling. As for the personal preference

modeling towards a bottom, we resort to the matrix factorization

framework, which has shown great success in personalized

5In this work, we use the sigmoid function s (x ) = 1/(1 + e−x ).

Algorithm 1 Personalized Compatibility Modeling.

Input: Training set D = {(m, i, j,k)}, learning rate ρ,
regularization parameter λ, trade-off parameters π , η and μ.

Output: Parameters ΘF .

1: Initialize parameters ΘF .

2: repeat

3: Draw (m, i, j,k) from D.

4: Compute pmij according to Eqn. (2).

5: for each parameter θ in ΘF do

6: Update θ ← θ + ρ(σ (−pmij )
pmij
θ

− λθ ).

7: end for

8: until Converge

recommendation tasks [1, 18, 21, 31]. The underlying philosophy is

to decompose the user-item interaction matrix into the latent user

factors and item factors, whose inner products encode the user-item

interaction scores. In our context, we model the user preference

towards a bottom as follows,

cmj = α + βm + βj +γ
T
mγ j , (5)

where cmj represents the preference of user um for bottom bj . α
is the to-be-learned global offset, βm and βj are the user um and

bottom bj bias terms. γm and γ j are the latent factors of user um
and bottombj , respectively, whose inner product captures the latent
preference of user um for the bottom bj .

Apart from the latent overall preference factors, inspired by [10],

we also incorporate the latent content-based preference factors. The

philosophy behind lies in that the user preference for a fashion item

may come from the visual characteristics, like the color and shape,

or the contextual features, like the brand and material. Different

from [10], we take into account of not only visual modality but also

contextual modality of fashion items to comprehensively measure

the user-item interactions. Accordingly, incorporating the latent

visual and contextual preference factors to the matrix factorization

framework, we have cmj =

α + βm + βj +γ
T
mγ j + η(ξ

v
m )T ξvj + (1 − η)(ξ cm )T ξ cj , (6)

where ξvm and ξvj are the latent visual factors of user um and

bottom bj , respectively. The inner product between them conveys

the visual preference interaction between the user um and bottom

bj . Similarly, ξ cm and ξ cj stand for the latent contextual factors of

user um and bottom bj , respectively, which compile the contextual

preference interaction. In this work, we make ξvj = ṽ
b
j and ξ cj = c̃

b
j ,

where ṽ
b
j and c̃

b
j are the latent embeddings for the visual and

contextual representations of bottom bj . η is the non-negative

tradeoff parameter.

3.2.3 Optimization. To accurately model the implicit interaction

among users and fashion items (i.e., tops and bottoms), we adopt

the BPR framework, which has proven to be powerful in the pair-

wise implicit preference modeling [2, 27, 29]. In particular, we first

construct the following training set D :=

{(m, i, j,k)|um ∈ U ∧ (ti ,bj ) ∈ Om ∧ bk ∈ B\bj }, (7)

where the quadruplet (m, i, j,k) indicates that to match the given

top ti and make a proper outfit, the user um prefers the bottom
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Table 1: The number of items of each category.

Category Number Category Number

Outerwear 35, 765 Top 119, 895

Bottom 77, 813 Shoes 106, 598

One Piece 25, 816 Accessories 306, 448

bj to bk . Then according to the BPR loss [32], we thus have the

following objective function,

L =
∑

(m,i , j ,k )∈D

lbpr (p
m
ij ,p

m
ik
) +

λ

2

��ΘF

��2
F
,

=
∑

(m,i , j ,k )∈D

[−ln(σ (pmij − pm
ik
))] +

λ

2

��ΘF

��2
F
, (8)

where λ is the non-negative hyperparameter, the last term is

designed to avoid overfitting and ΘF refers to the set of parameters

(i.e., Wx
k
, bx

k
, α , βm , βj , γm , γ j , ξ

v
m and ξ cm ) of the model.

Figure 3 illustrates the workflow of our model, and the optimization

procedure of our framework is summarized in Algorithm 1.

4 DATASET

In fact, several fashion datasets have been collected for different

research purposes, for instance, theWoW [26], Fashion-136K [15],

Amazon [30], DeepFashion [28], PolyvoreDataset [8], and Fash-

ionVC [36]. However, most of the existing publicly available

datasets lack the user context, which makes it intractable to

tackle the personalized clothing matching problem. It is worth

noting that although the dataset Amazon [30] contains the valuable

user contexts but it focuses more on the item recommendation

based on the user preference and hence lacks the ground truth

regarding the coordination among fashion items. Moreover, the

dataset used in [13] contains only 150 users, which hinders the

practical evaluation. Therefore, to bridge this gap, we created a new

large dataset for personalized clothing matching. In particular, we

crawled our data from the popular fashion web service IQON.

In particular, we first collected a set of popular outfits on IQON as

the seeds, and by tracking them,we obtained 6, 191 users. Thereafter,

we crawled the latest 500 historical outfits of each user due to

the following twofold concerns. 1) Extremely active users have

created thousands of outfits, where according to our pilot study,

the most active user has 4, 562 outfits, and would result in the

imbalanced dataset. And 2) users’ tastes on clothing matching

may shift gradually and it thus should be more reasonable to be

reflected by their latest outfits. To ensure the quality of the dataset,

we filtered out the users with less than 5 historical outfits and

only retained the items belonging to the six common categories:

Coat, Top, Bottom, One Piece6, Shoes and Accessories. Thereafter,

we obtained the dataset, IQON3000, comprising 308, 747 outfits

created by 3, 568 users with 672, 335 fashion items. Table 1 lists

the statistics of our dataset. For each fashion item, we particularly

crawled its profile, including the visual image, categories, attributes

and item description, as shown in Figure 4. In addition, each outfit

is associated with its price and number of likes.

6One piece refers to the dress and tunic.

Figure 4: Screenshot of the item profile. We particularly

collected the information highlighted by the boxes. Notably,

the text has been translated for illustration.

5 EXPERIMENT

To evaluate the proposed method, we conducted extensive

experiments on the real-world dataset IQON3000 by answering

the following research questions:

• Does the proposed GP-BPR achieve better performance than

the state-of-the-art methods?

• What is the contribution of the personal preferencemodeling

as compared to that over the general compatibility?

• How do GP-BPR perform in the application of the personal-

ized complementary fashion item retrieval?

5.1 Implementation

Contextual Representation. As a pioneering attempt of the

personalized clothing matching, here we only consider the title

description and category metadata as the contextual information

of the fashion item. We first tokenized the text with the help

of the Japanese morphological analyzer Kuromoji7. To obtain

the effective contextual representation, instead of the traditional

linguistic features [37, 38], we adopted the CNN architecture [19],

which has achieved compelling success in various natural language

processing tasks [14, 33]. In particular, we first represented each

contextual description as a concatenated word vector, where each

row represents one constituent word. To represent each word, we

employed the 300-D vector provided by the Japanese word2vec

Nwjc2vec in the search mode, which is created from NINJAL Web

Japanese Corpus [34]. We then deployed the single channel CNN,

consisting of a convolutional layer on top of the concatenated word

vectors and a max pooling layer. In particular, we used four kernels

with sizes of 2, 3, 4, and 5, respectively. For each kernel, we had

100 feature maps. We employed the rectified linear unit (ReLU) as

the activation function. Ultimately, we obtained a 400-D contextual

representation for each item.

Visual Representation. Regarding the visual modality, we

applied the deep CNNs, which has proven to be the state-of-the-art

model for image representation learning [4, 17, 23, 24]. In particular,

we chose the 50-layer residual network (ResNet50) in [9]. We fed

the image of each fashion item to the network, and adopted the

7http://www.atilika.org/.
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Table 2: Performance comparison among different ap-

proaches in terms of AUC.

Approach AUC

POP-T 0.6042

POP-U 0.5951

RAND 0.5014

Bi-LSTM 0.6739

BPR-DAE 0.7096

BPR-MF 0.7958

VBPR 0.8170

TBPR 0.8190

VTBPR 0.8232

GP-BPR 0.8388

output of the last average pooling layer as the visual representation.

Thereby, we represented the visual modality of each item with a

2048-D vector.

Experiment Settings. In our context of matching bottoms for

a given top, we only considered the outfits that either contain a

top and a bottom, or a coat plus a bottom/dress, where we treated

the coat as the ‘top’ while the bottom/dress as the ‘bottom’. As one

user may coordinate different shoes or accessories for the same top-

bottom pair to make different outfits, we removed the duplicated

top-bottom pairs from the dataset, resulting in 217, 806 unique

top-bottom pairs.

Regarding the evaluation, we adopted the leave-one-out strategy,

where we randomly sampled one top-bottom pair for each user and

retained it as the testing sample. Then we generated the quadruple

set Dtrain , Dvalid and Dtest according to Eqn.(7), where for

each positive top-bottom pair (ti ,bj ) of the user um , we randomly

sampled a negative bottom bk from the whole bottom dataset (i.e.,

B) to comprise a quadruplet (m, i, j,k). Finally, we adopted the area
under the ROC curve (AUC) [45] as the evaluation metric.

For optimization, we employed the adaptive moment estimation

method (Adam) [20]. We adopted the grid search strategy to

determine the optimal values for the regularization parameter λ
and trade-off parameters (π , η and μ). In addition, the mini-batch

size, the number of hidden units and learning rate were searched

in [32, 64, 128], [256, 512, 1024], and [0.0005, 0.001, 0.005, 0.01],

respectively. The proposed model was fine-tuned for 40 epochs, and

the performance on the testing set was reported. We empirically

set the number of hidden layers in representation learning K = 1.

5.2 On Model Comparison (RQ1)

We chose the following state-of-the-art methods as the baselines to

evaluate the proposed model.

• POP-T: We used the “popularity” of the bottom to measure

its compatibility with top, which is defined as the number of

outfits that the bottom appeared in the training set.

• POP-U: Similarly, in this baseline, we defined the “popularity”

of the bottom as the number of users who once interacted with

the bottom in the training set.

• RAND: We randomly assigned the compatibility scores ofmi j

andmik between items.

Table 3: Performance comparison among different modali-

ties in terms of AUC.

Approach AUC

GP-BPR-V 0.8239

GP-BPR-T 0.8313

GP-BPR 0.8388

• Bi-LSTM: We chose the bidirectional LSTM method in

[8] which sequentially models the outfit compatibility by

predicting the next item conditioned on previous ones. Here,

we adapted Bi-LSTM to deal with an outfit comprising only a

top and a bottom.

• BPR-DAE: We selected the content-based neural scheme

introduced by [36] that is capable of jointly modeling the

coherent relation between different modalities of fashion items

and the implicit preference among items via a dual autoencoder

network. It is worth noting that BPR-DAE overlooks the user

factor in the compatibility modeling.

• BPR-MF: We used the pairwise ranking method introduced

in [32], where the latent user-item relations are captured by

the MF method.

• VBPR: We adopted the VBPR in [10], which exploits the

visual data of fashion items with the factorization method to

recommend an item for the user.

• TBPR: We derived TBPR from VBPR by replacing the visual

signals with the textural modality of fashion items.

• VTBPR: We extended VBPR in [10] by further introducing

the context factor to comprehensively characterize the user’s

preference from both the visual and contextual perspectives.

Table 2 shows the performance comparison among different

approaches. From this table, we have the following observations: 1)

BPR-DAE shows superiority over Bi-LSTM, which implies that the

content-based scheme performs better than the sequential model

in the general compatibility modeling between fashion items. 2)

VTBPR outperforms VBPR, TBPR and BPR-MF, which confirms the

advantage of considering both the visual and contextual modalities

in the personal preference modeling. Interestingly, we found that

TBPR slightly surpasses VBPR, demonstrating the great potential of

contextual data in characterizing users’ personal preference of items.

3) GP-BPR achieves better performance than all the other methods

that focus on either the general compatibility modeling or person

preference modeling, validating the necessity of incorporating both

the general item-item compatibility and user-item preference in

the context of personalized clothing matching.

To evaluate the contribution of each modality in our model, we

further compared GP-BPR with its two derivatives: GP-BPR-V and

GP-BPR-T, where only the visual and contextualmodality of fashion

items were explored, respectively. Table 3 shows the performance

comparison of our model with different modalities. We observed

that our model outperforms both GP-BPR-V and GP-BPR-T, which

suggests that the visual and contextual signals do complement

each other and both contribute to the personalized compatibility

modeling. In addition, similar to above TBPR and VBPR, we found

that GP-BPR-T achieves better performance than GP-BPR-V. This

may be due to two reasons: 1) The contextual information of fashion

items can summarize the key features, such as the pattern and
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Figure 5: Performance of different methods on different

bottom categories. “All” denotes the whole testing set.

material, of fashion itemsmore concisely. And 2) the contextual data

usually convey some high-level semantic cues, like the item brand,

which obviously can facilitate not only the personal preference

modeling but also the general compatibility modeling, as items of

the same brand are more likely to be compatible.

5.3 On Component Comparison (RQ2)

To gain a better understanding with respect to the contribution

of each component in our model, we introduced two derivatives:

G-BPR and P-BPR, where we only consider the general com-

patibility and personal preference modeling component of our

model, respectively. Figure 5 shows the performance of our model

with different component configurations. It can be seen that our

model surpasses the derivative models, confirming the importance

of each component in our model. In addition, interestingly, we

noticed that P-BPR outperforms G-BPR, which suggests that the

personal preference is the dominant factor affecting the individual’s

personalized clothing matching. To gain more detailed insights,

we further checked the performance of our model with different

components on seven popular bottom categories. As shown in

Figure 5, GP-BPR outperforms the G-BPR and P-BRP consistently

across different bottom categories, which reconfirms the effects of

both two components. In addition, it is interesting to observe that by

incorporating the general compatibility modeling, GP-BPR achieves

the greatest improvement over the pure personal preference

modeling component P-BPR in terms of the category “Long Skirt”.

One plausible explanation is that long skirts are usually critical of

tops to make compatible outfits. Accordingly, taking the general

compatibility modeling into account can boost the performance

of P-BPR significantly. On the contrary, even with the help of the

general compatibility modeling, GP-BPR shows limited superiority

over P-BPR regarding the category “Denim Pants”. That can be

attributed to the fact that denim pants can go with various tops,

ranging from coats to T-shirts, which makes incorporating the

general item-item compatibility less helpful.

Moreover, we also illustrate the performance of our GP-BPR

with respect to the trade-off parameter μ in Figure 6, where

μ represents the weight of the general compatibility modeling

component. As we can see, when μ = 0.3 and P-BPR gets a

higher weight than G-BPR, our GP-BPR achieves the optimal

A
U

C

Figure 6: Performance of GP-BPR with respect to the trade-

off parameter μ.

performance, indicating the dominant effect of P-BPR to GP-BPR.

In addition, we noticed that when the value of μ ranges from 0.8 to

1.0 and our GP-BPR degenerates into the G-BPR, there is a sharp

performance decrease on GP-BPR. In a sense, this is consistent

with the above observation that the general compatibility modeling

component alone suffers from the poor performance in the context

of personalized compatibility modeling.

To intuitively show the impact of both components, we further

illustrate the comparison among G-BPR, P-BPR and GP-BPR with

several testing quadruplets in Figure 7. Notably, as aforementioned,

each testing quadruplet (m, i, j,k) indicates that the user um prefers

the bottom bj than bk to match the given top ti . As we can see,

bottomsbj andbk in the first example of user2 share the similar style

with the items in the user’s historical preference, making the user

preference to these two bottoms hard to tell and resulting the failure

of P-BPR. However, taking the general item-item compatibility into

account, where the “Ocean logo T-shirt” seems to go better with

the shorts rather than the long jeans, GP-BPR can get the correct

evaluation result. In addition, we also found that the personal

preference can boost the performance especially when the general

compatibility is hard to model. As can be seen, in the second

example of user1, the general compatibility between the top and

bottom candidates should be difficult to distinguish. Fortunately,

resorting to the historical preference of user1, our GP-BPR can

also reach the right result. Overall, both the general compatibility

modeling and personal preference modeling are pivotal in our

model and the cooperation of these two components can boost

the performance of each component.

5.4 On Fashion Item Retrieval (RQ3)

To assess the practical value of our work, we evaluate our model

towards the personalized complementary fashion item retrieval.

Similar to [11], we fed each user-top pair (um, ti ) in Dtest as the

query and randomly selected T bottoms as the ranking candidates

with only one positive (ground truth) bottom. Thereafter, by passing

them to the trained models and calculating the compatibility score,

we generated a ranking list of these bottoms for each query. In our

setting, we focused on the average position of the positive bottom

in the ranking list and thus adopted the mean reciprocal rank (MRR)

metric [16, 43, 44].

Figure 8 shows the performance of different models in terms

of MRR at different numbers of the bottom candidates T . As
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Figure 8: Performance of different approaches with respect

to MRR at different numbers of the bottom candidates T .

can be seen, our GP-BPR shows superiority over all the other

baselines consistently at different numbers of bottom candidates,

demonstrating the effectiveness of our model in the personalized

complementary fashion item retrieval. Moreover, to get a better

understanding of our GP-BPR in this context, in Figure 9, we listed

the ranking results of GP-BPR and its derivatives G-BPR and P-BPR

for a given query. For the query “red knit pullover”, G-BPR that

simply relies on the general compatibility modeling, does rank the

compatible bottoms at first places, including the positive one. Then

further taking the user (historical) preference factor into account,

we found that GP-BPR can boost the rank of the positive bottom

from the fourth place to the first one, which verifies the importance

of the user factor.

6 CONCLUSION AND FUTUREWORK

In this work, we present a personalized compatibility modeling

scheme towards personalized clothing matching, termed GP-BPR,

which measures the compatibility between fashion items from not

only the general aesthetics but also the personal preference perspec-

tives. In particular, motivated by the fact that both modalities (i.e.,

Query
Ranking List

1 2 3 4 5 6 7 8 9 10

Top

User Historical 
Preference

G-
BP

R
P-

BP
R

GP
-B

PR

Figure 9: Illustration of the ranking results. The bottoms

highlighted in the red boxes are the positive ones.

the visual and contextual modalities) of fashion items can deliver

valuable information regarding personal preference, we integrate

the visual and contextual data of fashion items into the personal

preference modeling. Moreover, we create a large-scale real-world

dataset, IQON3000, which has been released to benefit the research

community. Extensive experiments have been conducted on the

created dataset IQON3000. The encouraging experiment results

verify the effectiveness of the proposed scheme and indicate the

necessity of integrating both the general item-item compatibility

and personal user-item preference in the context of personalized

clothing matching. One limitation of our work is that currently we

fuse the two components of general compatibility modeling and

personalized preference modeling linearly. In the future, we plan

to devise a more advanced fusion strategy, such as the attentive

fusion, to boost the performance.

ACKNOWLEDGMENTS

This work is supported by the National Natural Science Foundation

of China, No.: 61772310, No.:61702300, No.:61702302, No.: 61802231,

and No. U1836216; the Project of Thousand Youth Talents 2016;

the Shandong Provincial Natural Science and Foundation, No.:

ZR2019JQ23, No.:ZR2019QF001; the Future Talents Research Funds

of Shandong University, No.: 2018WLJH63.

Session 1C: Fashion & Human Analysis MM ’19, October 21–25, 2019, Nice, France

327



REFERENCES
[1] Jesús Bobadilla, Rodolfo Bojorque, Antonio Hernando Esteban, and Remigio

Hurtado. 2018. Recommender systems clustering using Bayesian non negative
matrix factorization. IEEE Access 6, 3549–3564.

[2] Da Cao, Liqiang Nie, Xiangnan He, Xiaochi Wei, Shunzhi Zhu, and Tat-Seng
Chua. 2017. Embedding factorization models for jointly recommending items
and user generated lists. In Proceedings of the International ACM SIGIR Conference
on Research and Development in Information Retrieval. ACM, 585–594.

[3] Chih-Ming Chen, Ming-Feng Tsai, Jen-Yu Liu, and Yi-Hsuan Yang. 2013. Using
emotional context from article for contextual music recommendation. In
Proceedings of the ACM International Conference on Multimedia. ACM, 649–652.

[4] Jingyuan Chen, Xuemeng Song, Liqiang Nie, Xiang Wang, Hanwang Zhang, and
Tat-Seng Chua. 2016. Micro tells macro: predicting the popularity of micro-videos
via a transductive model. In Proceedings of the ACM International Conference on
Multimedia. ACM, 898–907.

[5] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy,
and Alan L Yuille. 2018. Deeplab: Semantic image segmentation with deep
convolutional nets, atrous convolution, and fully connected crfs. IEEE
Transactions on Pattern Analysis and Machine Intelligence 40, 4, 834–848.

[6] Zunlei Feng, Zhenyun Yu, Yezhou Yang, Yongcheng Jing, Junxiao Jiang, and
Mingli Song. 2018. Interpretable partitioned embedding for customized multi-
item fashion outfit Composition. In Proceedings of the International Conference on
Multimedia Retrieval. ACM, 143–151.

[7] Xianjing Han, Xuemeng Song, Jianhua Yin, YinglongWang, and Liqiang Nie. 2019.
Prototype-guided attribute-wise interpretable scheme for clothing matching.
In Proceedings of the International ACM SIGIR Conference on Research and
Development in Information Retrieval. ACM, 785–794.

[8] Xintong Han, Zuxuan Wu, Yu-Gang Jiang, and Larry S. Davis. 2017. Learning
fashion compatibility with bidirectional LSTMs. In Proceedings of the ACM
International Conference on Multimedia. 1078–1086.

[9] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770–778.

[10] Ruining He and Julian McAuley. 2016. VBPR: Visual Bayesian personalized
ranking from implicit feedback. In Proceedings of the International Joint Conference
on Artificial Intelligence. AAAI, 144–150.

[11] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng
Chua. 2017. Neural collaborative filtering. In Proceedings of the ACM International
WWW Conference. ACM, 173–182.

[12] Xiangnan He, Hanwang Zhang, Min Yen Kan, and Tat Seng Chua. 2016. Fast
matrix factorization for online recommendation with implicit feedback. In
Proceedings of the International ACM SIGIR Conference. 549–558.

[13] Yang Hu, Xi Yi, and Larry S Davis. 2015. Collaborative fashion recommendation: a
functional tensor factorization approach. In Proceedings of the ACM International
Conference on Multimedia. ACM, 129–138.

[14] Zhiting Hu, Xuezhe Ma, Zhengzhong Liu, Eduard H. Hovy, and Eric P. Xing.
2016. Harnessing deep neural networks with logic rules. In Proceedings of the
Annual Meeting of the Association for Computational Linguistics. The Association
for Computer Linguistics, 2410–2420.

[15] Vignesh Jagadeesh, Robinson Piramuthu, Anurag Bhardwaj, Wei Di, and Neel
Sundaresan. 2014. Large scale visual recommendations from street fashion images.
In Proceedings of the International ACM SIGKDD Conference. ACM, 1925–1934.

[16] Lu Jiang, Shoou-I Yu, Deyu Meng, Yi Yang, Teruko Mitamura, and Alexander G
Hauptmann. 2015. Fast and accurate content-based semantic search in 100m
internet videos. In Proceedings of the ACM International Conference on Multimedia.
ACM, 49–58.

[17] Aditya Khosla, Atish Das Sarma, and Raffay Hamid. 2014. What makes an
image popular?. In Proceedings of the ACM International WWW Conference. ACM,
867–876.

[18] Donghyun Kim, Chanyoung Park, Jinoh Oh, Sungyoung Lee, and Hwanjo
Yu. 2016. Convolutional matrix factorization for document context-aware
recommendation. In Proceedings of the ACM Conference on Recommender Systems.
ACM, 233–240.

[19] Yoon Kim. 2014. Convolutional neural networks for sentence classification. In
Proceedings of the Conference on Empirical Methods in Natural Language Processing.
1746–1751.

[20] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980.

[21] Yehuda Koren and Robert Bell. 2015. Advances in collaborative filtering.
Recommender Systems Handbook, 145–186.

[22] Yuncheng Li, Liangliang Cao, Jiang Zhu, and Jiebo Luo. 2017. Mining fashion
outfit composition using an end-to-end deep learning approach on set data. IEEE
Transactions on Multimedia 19, 8, 1946–1955.

[23] Jian Han Lim, Nurul Japar, Chun Chet Ng, and Chee Seng Chan. 2018.
Unprecedented usage of pre-trained CNNs on beauty product. In Proceedings of
the ACM International Conference on Multimedia. ACM, 2068–2072.

[24] Meng Liu, Liqiang Nie, Meng Wang, and Baoquan Chen. 2017. Towards micro-
video understanding by joint sequential-sparse modeling. In Proceedings of the
ACM International Conference on Multimedia. 970–978.

[25] Meng Liu, Xiang Wang, Liqiang Nie, Qi Tian, Baoquan Chen, and Tat-Seng Chua.
2018. Cross-modal moment localization in videos. In Proceedings of the ACM
International Conference on Multimedia. ACM, 843–851.

[26] Si Liu, Jiashi Feng, Zheng Song, Tianzhu Zhang, Hanqing Lu, Changsheng Xu,
and Shuicheng Yan. 2012. Hi, magic closet, tell me what to wear!. In Proceedings
of the ACM International Conference on Multimedia. ACM, 619–628.

[27] Siyuan Liu, Qiong Wu, and Chunyan Miao. 2018. Personalized recommendation
considering secondary implicit feedback. In Proceedings of the IEEE International
Conference on Agents. IEEE, 87–92.

[28] Ziwei Liu, Ping Luo, Shi Qiu, Xiaogang Wang, and Xiaoou Tang. 2016.
Deepfashion: Powering robust clothes recognition and retrieval with rich
annotations. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 1096–1104.

[29] Babak Loni, Roberto Pagano, Martha Larson, and Alan Hanjalic. 2016. Bayesian
personalized ranking with multi-channel user feedback. In Proceedings of the
ACM Conference on Recommender Systems. ACM, 361–364.

[30] Julian McAuley, Christopher Targett, Qinfeng Shi, and Anton Van Den Hengel.
2015. Image-based recommendations on styles and substitutes. In Proceedings
of the International ACM SIGIR Conference on Research and Development in
Information Retrieval. ACM, 43–52.

[31] Charles Packer, Julian McAuley, and Arnau Ramisa. 2018. Visually-aware
personalized recommendation using interpretable image representations. arXiv
preprint arXiv:1806.09820.

[32] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme.
2009. BPR: Bayesian personalized ranking from implicit feedback. In Proceedings
of the International Conference on Uncertainty in Artificial Intelligence. AUAI Press,
452–461.

[33] Aliaksei Severyn and Alessandro Moschitti. 2015. Twitter sentiment analysis
with deep convolutional neural networks. In Proceedings of the International ACM
SIGIR Conference on Research and Development in Information Retrieval. ACM,
959–962.

[34] Hiroyuki Shinnou, Masayuki Asahara, K Komiya, and M Sasaki. 2017. Nwjc2vec:
Word embedding data constructed from NINJAL Web Japanese Gorpus. Journal
of Natural Language Processing 24, 4, 705–720.

[35] Xuemeng Song, Fuli Feng, Xianjing Han, Xin Yang, Wei Liu, and Liqiang Nie.
2018. Neural compatibility modeling with attentive knowledge distillation.
In Proceedings of the International ACM SIGIR Conference on Research and
Development in Information Retrieval. ACM, 5–14.

[36] Xuemeng Song, Fuli Feng, Jinhuan Liu, Zekun Li, Liqiang Nie, and Jun Ma. 2017.
NeuroStylist: Neural compatibility modeling for clothingmatching. In Proceedings
of the ACM International Conference on Multimedia. 753–761.

[37] Xuemeng Song, Liqiang Nie, Luming Zhang, Mohammad Akbari, and Tat-Seng
Chua. 2015. Multiple social network learning and its application in volunteerism
tendency prediction. In Proceedings of the International ACM SIGIR Conference on
Research and Development in Information Retrieval. ACM, 213–222.

[38] Xuemeng Song, Liqiang Nie, Luming Zhang, Maofu Liu, and Tat-Seng Chua. 2015.
Interest inference via structure-constrained multi-source multi-task learning. In
Proceedings of the International Joint Conference on Artificial Intelligence. AAAI
Press, 2371–2377.

[39] Guang Lu Sun, Zhi Qi Cheng, Xiao Wu, and Qiang Peng. 2017. Personalized
clothing recommendation combining user social circle and fashion style
consistency. Multimedia Tools and Applications 77, 6, 1–24.

[40] Thanh Tran, Kyumin Lee, Yiming Liao, and Dongwon Lee. 2018. Regularizing
matrix factorization with user and item embeddings for recommendation. In
Proceedings of the ACM International Conference on Information and Knowledge
Management. ACM, 687–696.

[41] Zheng Wang, Xiang Bai, Mang Ye, and Shin’ichi Satoh. 2018. Incremental deep
hidden attribute learning. In Proceedings of the ACM International Conference on
Multimedia. ACM, 72–80.

[42] Xun Yang, Yunshan Ma, Lizi Liao, Meng Wang, and Tat-Seng Chua. 2018.
TransNFCM: Translation-based neural fashion compatibility modeling. arXiv
preprint arXiv:1812.10021.

[43] Jiangchao Yao, Yanfeng Wang, Ya Zhang, Jun Sun, and Jun Zhou. 2018. Joint
latent dirichlet allocation for social tags. IEEE Transactions on Multimedia 20, 1,
224–237.

[44] Hongzhi Yin, Hongxu Chen, Xiaoshuai Sun, Hao Wang, Yang Wang, and Quoc
Viet HungNguyen. 2017. SPTF: A scalable probabilistic tensor factorizationmodel
for semantic-aware behavior prediction. In Proceedings of the IEEE International
Conference on Data Mining. 585–594.

[45] Hanwang Zhang, Zheng-Jun Zha, Yang Yang, Shuicheng Yan, Yue Gao, and Tat-
Seng Chua. 2013. Attribute-augmented semantic hierarchy: towards bridging
semantic gap and intention gap in image retrieval. In Proceedings of the ACM
International Conference on Multimedia. ACM, 33–42.

Session 1C: Fashion & Human Analysis MM ’19, October 21–25, 2019, Nice, France

328




