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Neural Compatibility Modeling With Probabilistic
Knowledge Distillation

Xianjing Han , Xuemeng Song, Yiyang Yao, Xin-Shun Xu , and Liqiang Nie

Abstract— In modern society, clothing matching plays a pivotal
role in people’s daily life, as suitable outfits can beautify their
appearance directly. Nevertheless, how to make a suitable outfit
has become a daily headache for many people, especially those
who do not have much sense of aesthetics. In the light of
this, many research efforts have been dedicated to the task
of complementary clothing matching and have achieved great
success relying on the advanced data-driven neural networks.
However, most existing methods overlook the rich valuable
knowledge accumulated by our human beings in the fashion
domain, especially the rules regarding clothing matching, like
“coats go with dresses” and “silk tops cannot go with chif-
fon bottoms”. Towards this end, in this work, we propose a
knowledge-guided neural compatibility modeling scheme, which
is able to incorporate the rich fashion domain knowledge to
enhance the performance of the compatibility modeling in the
context of clothing matching. To better integrate the huge and
implicit fashion domain knowledge into the data-driven neural
networks, we present a probabilistic knowledge distillation (PKD)
method, which is able to encode vast knowledge rules in a
probabilistic manner. Extensive experiments on two real-world
datasets have verified the guidance of rules from different sources
and demonstrated the effectiveness and portability of our model.
As a byproduct, we released the codes and involved parameters
to benefit the research community.

Index Terms— Multi-modal, compatibility modeling,
probabilistic knowledge distillation.

I. INTRODUCTION

ACCORDING to the FashionUnited, the global fashion
and apparel industry is valued of three trillion dollars,

making up two percent of the world’s gross domestic product.1

The blossom of the fashion market demonstrates people’s great
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Fig. 1. Examples of outfit compositions.

demand of clothing. In fact, clothing plays a vital role in
people’s daily life, since a decent outfit can improve one’s
appearance right away. Nevertheless, the tremendous fashion
items (e.g., the tops and bottoms) tend to get people over-
whelmed and make it rather intractable for them to compose
suitable outfits, especially for those who lack the good taste of
clothing matching. Fortunately, with the proliferation of many
online fashion communities (e.g., Ssense2 and Chictopia,3)
plenty of well-composed outfits shared by fashion experts,
as shown in Figure 1, are made publicly available. In fact,
the rich real-world outfit data has facilitated many researchers
to investigate the solution for automatic clothing matching.

The great success of deep learning methods in representa-
tion learning has propelled researchers to be keen on tackling
the clothing matching problem with advanced deep neural
networks to learn powerful representations for fashion items.
As pure data-driven methods, neural networks heavily rely on
large amounts of labeled data; whereas they often overlook
the value of human knowledge and suffer from the poor inter-
pretability. As a matter of fact, the cognitive process of human
beings enables us to learn from not only the concrete examples
but also the general knowledge, which can be derived from the
rich human experiences. Since clothing matching has become
an essential aspect of people’s daily life, it has accumulated
a variety of valuable knowledge, like the matching rule “tank
tops go better with shorts instead of dresses”. Although certain
knowledge rules may be subjective to some extent, most of
them have been widely accepted by the public as common
sense. Therefore, to get rid of the defects of the deep neural
networks and improve the matching performance, in this work,
we work towards leveraging the domain knowledge to boost
the performance of data-driven clothing matching.

2https://www.ssense.com/
3http://www.chictopia.com/
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Without loss of generality, the problem we pose here can
be cast as the compatibility modeling between complemen-
tary fashion items, such as the top and bottom. However,
modeling the compatibility between fashion items from both
data-driven and knowledge-driven perspectives is challenging
due to the following reasons. 1) The human knowledge on
fashion domain is usually unstructured and fuzzy as it tends
to be implicitly conveyed by the large amount of outfit com-
positions of fashion experts, making it difficult to be directly
employed by neural networks. Therefore, it is an arduous
task to establish a set of structured knowledge rules based on
the vast fuzzy domain knowledge for the clothing matching.
2) How to properly encode such knowledge rules into the pure
data-driven learning scheme and enable the model to learn
from both the specific data and the general rules poses another
challenge for us. And 3) verifying the portability of utilizing
the domain knowledge in the context of clothing matching
across different datasets remains largely untapped.

To address the above challenges, we propose a neural
compatibility modeling scheme with probabilistic knowledge
distillation based on the Bayesian Personalized Ranking
(BPR) [1], dubbed PKD-DBPR, as shown in Figure 2,
which is able to learn from both the specific data sam-
ples and the general fashion domain knowledge. In particu-
lar, we present a teacher-student scheme, where the teacher
network is to guide the training process of the student net-
work with the domain knowledge regularization. Namely,
the student network is encouraged to not only achieve good
performance in the compatibility modeling but also emulate
the knowledge-regularized teacher network well. As a pure
data-driven learning model, the student network is devised
as a dual-path neural network for the purpose of learning a
latent compatibility space to unify the complementary fashion
items from heterogeneous spaces. In order to comprehensively
model the compatibility, the student network seamlessly inte-
grates the visual and contextual modalities of fashion items
by imposing hidden layers over the concatenations of their
representations on different modalities. Ultimately, towards
the compatibility modeling, we adopt the pairwise preference
between complementary fashion items and hence build our
student network based upon the BPR framework.

As to the teacher network construction for the knowledge
distillation, we introduce a novel knowledge encoding method,
probabilistic knowledge distillation (PKD), an extension of our
previous work [2]. In [2], we proposed an attentive knowl-
edge distillation method (AKD), which is able to encode the
manually-screened fashion knowledge rules into the teacher
network regularizers to guide the student network, where the
attention mechanism [3] is adopted to adaptively assign the
knowledge rule confidences. Motivated by the fact that the
human knowledge on fashion domain can be vast and fuzzy,
making it infeasible to manually derive the matching rules and
learn the corresponding rule confidences, we devise the PKD
to fulfil the knowledge encoding task from the probabilistic
perspective. In particular, PKD is capable of coping with the
abundant domain knowledge without the manual screening
efforts and thus able to incorporate more thorough domain
knowledge than AKD. Moreover, in a sense, the nature of PKD

that expresses the knowledge rules in a probabilistic manner
alleviates the trouble of rule confidence learning. Notably,
both AKD and the proposed PKD aim to harness the neural
networks with the rich fashion domain knowledge and enhance
the interpretability for the compatibility assessment of a given
item pair with the help of the rules extracted from the domain
knowledge. Beyond that, to gain a comprehensive understand-
ing of the rule guidance, the knowledge rules utilized in this
work are derived from not only our training (internal) dataset
but also the publicly available (external) knowledge. The main
contributions of this work can be summarized in threefold:

• We present a compatibility modeling scheme with prob-
abilistic knowledge distillation in the context of clothing
matching, which enables the scheme to learn from not
only the specific data samples but also the general domain
knowledge. The proposed PKD facilitates the scheme to
incorporate more abundant rules and dispense with the
trouble of rule confidence learning, as compared to our
previous AKD.

• To get a thorough understanding of the rule guidance
in PKD-DBPR, we explore both the internal and exter-
nal knowledge rules that can be extracted from our
own training dataset and the external public knowledge,
respectively.

• Extensive experiments conducted on two real-world
datasets FashionVC and ExpFashion demonstrate the
portability and effectiveness of the proposed scheme. As
a byproduct, we released the codes and parameters to
benefit other researchers.4

The rest of the paper is organized as follows. Section II
briefly reviews the related work. In Section III, we intro-
duce the proposed probabilistic knowledge distillation. The
experimental results and analyses are presented in Section IV,
followed by the conclusion and future work in Section V.

II. RELATED WORK

A. Fashion Analyses

In recent years, the huge potential of the fashion
market has attracted increasing attention of researchers
from various research communities. Existing researches
mainly focus on clothing retrieval [4], [5], fashion trend-
ing prediction [6], fashionability prediction [7] and compat-
ibility modeling [2], [8], [9]. For example, Liu et al. [5]
presented a latent Support Vector Machine [10] model for
both occasion-oriented outfit and item recommendation based
on a dataset of manually annotated wild street photos.
Because of the infeasibility of human annotated dataset,
some researchers have resorted to other sources, where
real-world data can be acquired automatically. For example,
McAuley et al. [11] introduced a general framework to model
the human visual preference for a given pair of objects
based on a real-world dataset of co-purchase products on
Amazon. In particular, they extracted visual features with
convolutional neural networks (CNNs) and utilized a similarity
metric to model the human notion of complementary objects.

4https://tinyurl.com/y7pftrj7/
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Fig. 2. Illustration of the proposed scheme. The student network, comprising dual-path neural networks, aims to learn the latent compatibility space where
the implicit preference among items can be modeled via Bayesian Personalized Ranking (BPR). The teacher network compiles the domain knowledge by
PKD and guide the student network to achieve the knowledge distillation. ti : top; b j : bottom; “�”: pairwise preference; “->”: the category hierarchy; Rm :
the m-th matching rule set adopted in PKD; f q(·): the frequency of the attribute value pair.

Likewise, He and Mcauley [12] proposed a scalable matrix
factorization approach that incorporates the visual features of
product images to fulfil the recommendation task. However,
former researches on fashion analysis mainly investigate the
practical problem on the visual data but ignored the value
of contextual information of fashion items. Towards this end,
Song et al. [2] comprehensively investigated the problem of
complementary fashion item matching with a multi-modal
fashion dataset, FashionVC, collected from Polyvore.5 Later,
Lin et al. [9] explored user comments to improve the fash-
ion recommendation quality, where a dataset, ExpFashion,
comprising not only the multi-modal data of fashion items
but also the user comments, is created. Although existing
efforts have obtained remarkable achievements, these studies
mainly focus on modeling the compatibility purely based on
the data-driven deep learning methods but overlook the value
of human knowledge. Distinguished from existing researches,
we aim to employ the fashion domain knowledge to guide the
pure data-driven neural networks, and hence reduce the model
reliance on the large amounts of labeled data and improve the
model interpretability as a side product.

B. Knowledge Distillation

Deep neural networks have achieved distinguished perfor-
mance in various application domains ranging from natural
language processing [13], [14] to computer vision [15], [16].
To boost the learning performance, one common way in
machine learning domain is to ensemble multiple models and
average the predictions. However, it is intractable to ensemble
the large neural networks due to its tremendous computa-
tional expense and cumbersome deployment. Towards this

5Polyvore has been acquired by the global fashion platform Ssense in 2018.

end, in 2015, Hinton et al. [17] first introduced a knowledge
distillation framework to transfer the knowledge from a large
cumbersome model to a small model, which facilitates the
model deployment. Later, the knowledge distillation frame-
work is adopted to accelerate the training process of the neural
network [18] and improve the model portability [19], [20].

Similarly, inspired by the knowledge distillation framework,
Hu et al. [21] introduced an iterative teacher-student distil-
lation approach. The approach can be intuitively explained
in analogous to the human education where the teacher is
aware of systematic general rules and the student learns from
the teacher by iteratively imitating the teacher’s solutions to
specific questions. In particular, they equipped the teacher
neural network with regularizations that encode the domain
knowledge, represented by logic rules, to tackle various nat-
ural language processing tasks. The domain knowledge not
only boosts the model performance, but also improves the
interpretability of the pure data-driven model. In addition,
Yu et al. [22] studied the guidance of both the internal and
external linguistic knowledge in the context of visual rela-
tionship detection, and the experimental results are promising.
Furthermore, Alashkar et al. [23] introduced a makeup recom-
mendation and synthesis system, where both the makeup art
domain knowledge and makeup expert experience are incor-
porated into the neural network to boost the performance of
makeup recommendation. Although the knowledge distillation
in deep neural networks has been successfully applied to
solve the visual relationship detection [22], sentence sentiment
analysis [21] and name entity recognition [24], limited efforts
have been dedicated to the fashion domain. Towards this end,
in this work, we aim to devise a proper knowledge encoding
method to take advantage of the fashion domain knowledge
as a guidance in the traditional neural models.
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III. NEURAL COMPATIBILITY MODELING

A. Notation

To improve the readability, we first declare some notations
used in this paper. We use bold capital letters (e.g., X) and bold
lowercase letters (e.g., x) to represent matrices and vectors,
respectively. Let the non-bold letters (e.g., x) denote scalars
and Greek letters (e.g., β) denote parameters. The vectors
without clarification are in the column forms. In addition,
we use ||A||F to represent the Frobenius norm of matrix A.

B. Problem Formulation

To make a harmonious outfit, people prefer to choose
clothes with high compatibility, such as “a short denim jacket
plus a corded lace and crepe dress” or “a striped cashmere
sweater plus skinny jeans”. In this work, we focus on tackling
the essential problem of compatibility modeling for clothing
matching.

Formally, we have a set of tops T = {
t1, t2, · · · , tNt

}
and bottoms B = {

b1, b2, · · · , bNb

}
, where Nt and Nb

represent the number of the tops and bottoms, respectively.
We use vt

i (vb
i ) ∈ R

Dv and ct
i (cb

i ) ∈ R
Dc to respectively

denote the visual and contextual embeddings of ti (b j ), where
Dv and Dc stand for the dimensions of the corresponding
embeddings. In addition, each fashion item is characterized
by a set of attributes (e.g., the color and category) A =
{am}M

m=1, where am is the m-th attribute and M is the total
number of attributes. For each attribute am , we also have
a set of distinct values Em =

{
val1

m, val2
m , · · · , val Em

m

}
,

where Em is the total number of the values. For example,
the values for the attribute color include blue, white and
red. Meanwhile, we have a set of positive top-bottom pairs
S = {

(ti1 , b j1), (ti2 , b j2), · · · , (tiN , b jN )
}

obtained from the
dataset that consists of the compositions of fashion experts,
where N denotes the total number of positive pairs. Accord-
ingly, for each top ti , a set of positive bottoms B+

i ={
b j ∈ B|(ti , b j ) ∈ S

}
can be derived.

Let mij stand for the compatibility between top ti and
bottom b j , based on which we thus can derive a ranking list
of bottoms b j ’s for a given top ti and address the practical
clothing matching problem. In this work, to accurately mea-
sure mij , we devote to devise a neural compatibility modeling
scheme, which is capable of utilizing the general knowledge
rules to supervise the training of the data-driven model and
hence boost the performance. Table I summarizes the main
notations used in this work.

C. Data-Driven Compatibility Modeling

In fact, due to the heterogeneity of complementary fashion
items, it is not advisable to directly measure their compat-
ibility from the original feature spaces. To bridge this gap,
we argue that there should be a latent compatibility space
where the compatibility between complementary items can be
well measured. Moreover, the fact that the compatibility can
be always affected by sophisticated factors, ranging from the
color and style to material and pattern, propels us to learn the
latent space in the non-linear manner. Naturally, we employ

TABLE I

SUMMARY OF THE MAIN NOTATIONS

the neural network to explore the latent compatibility space for
its superior performance in various machine learning tasks.

In fact, each fashion item usually possesses multiple
modalities, such as the visual and contextual modalities,
which complementarily characterize the same fashion item.
For example, the color and shape of the fashion items can be
intuitively reflected by the visual modality, while the category
and material information can be concisely represented by the
contextual modality. To fully exploit the rich multi-modal
data of fashion items, we resort to the multi-layer perceptron
(MLP), which can model the semantic relation between dif-
ferent modalities of fashion items. In particular, we deploy
K hidden layers over the concatenation of the visual and
contextual representations as follows,⎧⎪⎨
⎪⎩

zx
i0 =

[
vx

i

cx
i

]
,

zx
ik = s(Wx

k zx
i(k−1) + bx

k ), k = 1, · · · , K , x ∈ {t, b} ,

(1)

where zx
ik is the hidden representation, WX

k and bx
k are weight

matrices and biases, respectively. t and b denote top and
bottom. s : R �→ R is a non-linear function applied element
wise and we choose the sigmoid function s(x) = 1

1+e−x in
this work. The latent representation of the fashion item is
defined as the output of the K -th layer, i.e., z̃x

i = zx
i K ∈

R
Dl , x = {t, b}, where Dl denotes the dimension of the latent

compatibility space. Therefore, the compatibility between top
ti and bottom b j can be measured as follows,

mij = (z̃t
i )

T z̃b
j . (2)

In a sense, we can safely argue that the top-bottom
pairs composed together by fashion experts are the positive
(compatible) samples. However, it may be too absolute to
claim that the non-composed fashion item pairs are the nega-
tive (incompatible) ones, due to that they can be the missing
potential positive pairs whose items may be composed together
later. In order to model the implicit relations between the
tops and bottoms, we adopt the BPR framework [1], which
has shown excellent performance in the implicit preference
modeling [25]–[27]. In addition, we argue that as for top ti ,
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bottoms in the positive set B+
i are more compatible than the

non-composed bottoms. Accordingly, we construct the training
set DS := {

(i, j, k)|ti ∈ T , b j ∈ B+
i ∧ bk ∈ B \ B+

i

}
, where

the triplet (i, j, k) indicates that compared with bottom bk ,
bottom b j is more compatible with top ti . Then according
to [1], the objective function can be written as follows,

Lbpr =
∑

(i, j,k)∈DS

−ln(σ (mij − mik)) + λ

2
���2

F , (3)

where λ is the non-negative hyperparameter to avoid overfit-
ting. � denotes the set of parameters (i.e., Wx

k and bx
k ).

D. Probabilistic Knowledge Distillation

As an indispensable part of people’s daily life, clothing
matching domain has accumulated considerable human knowl-
edge. For example, it is widely recognized that sweaters go
better with jeans than shorts, while a silk top can hardly go
with a knit bottom. To take full advantage of the valuable
domain knowledge, we employ the knowledge distillation
technique to guide the neural networks and thus enable the
model to learn from not only the specific data but also
the general knowledge rules. In particular, we adopt the
teacher-student scheme [21], which shares the same underly-
ing philosophy with the human education, where the teacher
equipped with the professional knowledge regularization can
guide students with his/her solutions to specific problems.
In particular, apart from achieving the outstanding predic-
tion performance, the data-driven student network p is also
encouraged to imitate the behaviour of the teacher network q .
Accordingly, the objective function at iteration t can be written
as follows,

�t+1 = arg min
�

∑
(i, j,k)∈DS

{
(1 − ρ)Lbpr (m

p
i j , m p

ik )

+ρLcrs (q
(t)(i, j, k), p(i, j, k)

}
+ λ

2
���2

F , (4)

where Lcrs represents the cross-entropy loss. p(i, j, k) and
q(i, j, k) are the sum-normalized distributions over the com-
patibility scores predicted by the student network p and
teacher network q (i.e., [m p

i j , m p
ik ] and [mq

i j , mq
ik ]), respec-

tively. ρ is the imitation parameter calibrating the relative
weights of these two terms.

Considering that the human knowledge regarding fashion
can be vast and fuzzy, making it intractable to manually
screen the large amount of matching rules and set the rule
confidences, we encode the matching rules into the teacher
network in a probabilistic manner. Regarding the matching rule
derivation, for each attribute am , we can obtain a set of value
pairs with their co-occurrence frequency Fm in the dataset,
which is defined as follows,{

(val(t)m , val(b)
m ) : f q(val(t)m , val(b)

m )|val(t)m , val(b)
m ∈Em

}
, (5)

where val(t)m and val(b)
m represent the values of top and bottom

regarding the m-th attribute. f q(val(t)m , val(b)
m ) refers to the

co-occurrence frequency of the value pair (val(t)m , val(b)
m ), and

we calculate f q(val(t)m , val(b)
m ) =∑

ti∈T ,b j∈B+
i

I (val(t)m = val(ti )m ∧ val(b)
m = val

(b j )
m ), (6)

where val(ti )m and val
(b j )
m denote the values regarding attribute

am of top ti and bottom b j in S, respectively. I (·) is
the indicator function, which takes on a value of 1 if and
only if its argument is true, and 0 otherwise. In a sense,
f q(val(t)m , val(b)

m ) can be treated as the confidence of the
rule regarding (val(t)m , val(b)

m ). The details pertaining to the
construction of the rule set Rm from Fm will be introduced
later in the following Subsection III-E.

As for the teacher network construction, on the one hand,
we expect that the student network p can learn well from the
teacher network q , and hence adopt the closeness between the
compatibility prediction of these two networks. On the other
hand, we propose to utilize the rule regularizers to encode
the general domain knowledge. Accordingly, we adapt the
teacher network construction method proposed in [21], [28]
as follows,

min
q

K L(q(i, j, k)||p(i, j, k)) − C
∑

m

Eq [gm(i, j, k)]. (7)

Accordingly, we have the following closed-form solution,

q∗(i, j, k) ∝ p(i, j, k) exp

{∑
m

Cgm(i, j, k)

}
, (8)

where gm(i, j, k) is the m-th attribute rule constraint function
introduced to reward or penalize the student network in a
probabilistic manner. In particular, we define gm(i, j, k) =⎧⎪⎨
⎪⎩

h([ f q(val(i)m , val( j )
m ), f q(val(i)m , val(k)

m )]), i f

{
τm(i j)=1,

τm(ik)=1,

[0, 0], others,

(9)

where val(a)
m denotes the value regarding attribute am of

sample a and τm(ab) = 1 means that the value pair
(val(a)

m , val(b)
m ) belongs to Rm . h is the sum-normalization

function h([u, v]) = [ u
u+v , v

u+v ], which is able to cast the
co-occurrence frequency to the probabilistic representation.
The workflow of PKD is illustrated in Figure 3.

Notably, the teacher network is constructed from the student
network in the initial stage, which may result in the poor
guidance at the beginning of the training process. Therefore,
we expect the whole framework favors to the prediction of
the ground truth more at first and gradually biases towards
emulating the teacher network to distill the knowledge. We
thus adopt the strategy in [21] that assigns ρ dynamically to
keep ρ increasing as the training process goes.

E. Rule Construction

In this work, we aim to utilize the explicit structured
matching rules to guide the neural network and hence boost
the performance of clothing matching. In general, the com-
patibility between fashion items is mainly affected by five
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Fig. 3. Illustration of the proposed PKD method.

TABLE II

VALUE EXAMPLES OF EACH ATTRIBUTE

attributes: color, material, pattern, category and brand. There-
fore, we take the annotation details in [29] as a reference and
define a dictionary with all the possible values of each attribute
based on our training dataset. Table II shows several value
examples of each attribute. According to Eqn. (5), we conduct
the statistics on the co-occurrence of attribute value pairs and
obtain the Fm , based on which we can easily acquire the
matching rules for PKD. In particular, we employ the high
co-occurrence value pairs and low ones in Fm to constitute
the final co-occurrence value pair set Rm for PKD. The
underlying philosophy is that the attribute value pairs with
high co-occurrence frequency can be treated as the positive
rules that people should follow in outfit composition, while
those with low co-occurrence frequency can be regarded as
the negative rules that people should avoid.

To make the rules more intuitive, we use [ f q(value1,
value2), f q(value1, value3)] represents the rule in PKD. For
example, [ f q(coat, dress), f q(coat, skir t)] stands for the
rule regarding the matching between coats and dress/skirts.
Moreover, according to Eqn. 9, our model needs to judge
whether the given fashion item pair activates certain rule.
Here we define that the given pair triggers the rule
[ f q(value1, value2), f q(value1, value3)], if and only if the
value1, value2 and value3 agree with the attribute values,
extracted from the metadata, of the given top and two bottom
candidates, respectively.

IV. EXPERIMENT

To verify the portability and effectiveness of the proposed
model, we conducted extensive experiments on two real-world

datasets FashionVC and ExpFashion. In this section, we first
introduce the experimental settings in Subsection IV-A and
then present the results of each experiment in the following
subsections. In particular, in Subsection IV-B, we compare
the proposed PKD-DBPR with several traditional compati-
bility modeling methods to verify the effectiveness of our
PKD-DBPR. To gain more deep insights on knowledge encod-
ing methods, we further make the detailed comparison between
AKD and PKD in Subsection IV-C. Besides, we analyze the
internal and external rule guidance of PKD-DBPR in Subsec-
tion IV-D, and justify its practical value in the application of
complementary fashion item retrieval in Subsection IV-E.

A. Experimental Settings

1) Dataset: In this work, to evaluate our model, we adopted
two real-world datasets FashionVC [30] and ExpFashion [9],
both of which are collected from the online fashion com-
munity Polyvore. FashionVC consists of 20,726 outfits with
14,871 tops and 13,663 bottoms, while ExpFashion is com-
prised of 200,745 outfits with 29,113 tops and 20,902 bottoms.
Each fashion item in FashionVC and ExpFashion is associ-
ated with the visual image, relevant categories and the title
description. Pertaining to the derivation of the matching rules
for PKD, we first extracted the attribute values of each fashion
item in our positive top-bottom pairs based on their visual and
contextual metadata. In particular, for attributes (e.g., material,
pattern, category and brand) that are usually conveyed by
the contextual information, we extracted the attribute values
by keyword detection. As for the attribute color, we directly
resorted to the histogram calculation in the HSV space to
acquire the color value of each item.

2) Contextual Representation: In this work, we took the
title and category labels in different granularity as the con-
textual description of a fashion item. To obtain the effective
contextual representation, instead of using traditional linguistic
features [31], [32], we adopted the CNN architecture [33],
which has demonstrated its effectiveness in many natural
language processing tasks [13], [14]. In particular, we first
transformed each contextual description into a concatenated
word vector, where each row represents one constituent word
and each word is allocated with a publicly available 300-D
word2vec [34] vector. Then, we deployed the single channel
CNN, which consists of a convolutional layer on top of the
concatenated word vectors and a max pooling layer. In partic-
ular, we utilized four kernels with the sizes of 2, 3, 4, and 5.
For each kernel size, we adopted 100 feature maps and the
rectified linear unit (ReLU) as the activation function. Finally,
we represented the contextual modality of each item with a
400-D vector.

3) Visual Representation: As for the visual modality,
we applied the deep CNNs, which have achieved compelling
performance in the image representation learning [35]–[37].
In particular, we chose the pre-trained ImageNet deep neural
network provided by the Caffe software package [38], com-
prising 5 convolutional layers and 3 fully-connected layers.
We adopted the output of the fc7 layer as the visual represen-
tation. Ultimately, we obtained a 4096-D visual representation
for each item.
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Regarding the experimental setting, we divided the positive
top-bottom pair set S into the training set Strain (80%),
validation set Svalid (10%), and testing set Stest (10%). For
each positive pair (ti , b j ), we randomly sampled three bottoms
bk’s (bk /∈ B+

i ), and each bk corresponds to a triplet (i, j, k).
We employed the area under the ROC curve (AUC) [39], [40]
as the evaluation metric and adopted the stochastic gradient
descent (SGD) [41] with the momentum factor as 0.9 for
optimization.

In addition, to determine the optimal values for the reg-
ularization parameters (i.e., λ, C), we employed the grid
search strategy among the values {10r |r ∈ {−4, · · · ,−1}} and
[2, 4, 6, 8], respectively. Furthermore, the mini-batch size,
the number of hidden units and learning rate were searched in
[32, 64, 128, 256], [128, 256, 512, 1024], and [0.005, 0.01,
0.02, 0.05], respectively. We fine-tuned the proposed model for
40 epochs with the performance on the testing set reported.
We empirically found the proposed model achieves the optimal
performance with K = 1 hidden layer of 1024 hidden units.

B. Comparison of Approaches

Due to the sparsity of our dataset, the matrix factorization
based methods [42]–[44] are not much suitable. We thus
adopted the following content-based baselines to evaluate the
proposed PKD-DBPR.

• POP: We used the “popularity” of bottom b j to measure
its compatibility with top ti . In this work, the “popularity”
is defined as the number of tops that has been paired with
b j in the training set.

• RAND: We randomly assigned the compatibility between
fashion items.

• IBR: We adopted the image-based recommendation
method proposed by [11], which aims to model the com-
patibility between objects simply based on their visual
appearance. In particular, a linear latent style space is
learned to facilitate the retrieval of correlated objects with
the traditional nearest-neighbor search.

• ExIBR: We chose the extension of IBR introduced by [2]
as one baseline, where both the visual and contextual data
of fashion items are utilized to find the latent style space.

• Bi-LSTM: We chose the bidirectional LSTM model
in [45] which explores the outfit compatibility by sequen-
tially predicting the next item conditioned on previous
ones. In our context, we adapted Bi-LSTM to deal with
an outfit comprising of two items: a top and a bottom.

• BPR-DAE: We selected the content-based neural scheme
introduced by [30], which jointly exploits the implicit
preference among items via a dual autoencoder network
and the coherent relation between the visual and contex-
tual modalities of fashion items.

• DBPR: To get a better understanding of our model,
we introduced the baseline DBPR, which is the derivation
of our model that removes the guidance of the teacher
network and only relies on the student network.

• AKD-DBPR: To better evaluate the knowledge encoding
method, we introduced the baseline AKD-DBPR [2],
which also utilizes the teacher-student scheme to encode

TABLE III

COMPARISON AMONG DIFFERENT APPROACHES IN TERMS
OF AUC (%) ON FASHIONVC AND EXPFASHION

the knowledge rules. Differently, AKD-DBPR manually
screens the matching rules and assigns the rule confi-
dences with the attention mechanism.

Since we can choose either the distilled student network p
or the teacher network q with a final projection for the
testing, we introduced two derivations for AKD-DBPR
and PKD-DBPR respectively: AKD-DBPR-p, AKD-DBPR-q,
PKD-DBPR-p and PKD-DBPR-q. Here the suffixes “-p” and
“-q” refer to utilizing the final student network and teacher
network to get the compatibility between fashion items,
respectively.

Table III shows the performance comparison among dif-
ferent approaches on two datasets. Notably, regarding the
ExpFashion, we randomly sampled 20,000 positive outfits
instead of using the whole dataset. From this table, we have
the following observations.

1) DBPR outperforms all the other state-of-the-art pure
data-driven baselines, which demonstrates the superiority of
the proposed content-based neural networks for the compati-
bility modeling.

2) AKD-DBPR and PKD-DBPR, exploiting the matching
rules derived from the training dataset, both surpass DBPR,
which confirms the benefit of the knowledge distillation in
the context of compatibility modeling. To gain a better under-
standing of the impact of the knowledge rule guidance, we par-
ticularly illustrated the comparison between PKD-DBPR and
DBPR on several testing triplets in Figure 4. As we can
see, PKD-DBPR performs especially better in cases that the
given two bottoms b j and bk both seem to be visually
compatible to the top ti , and the domain knowledge can be
helpful in distinguishing the more compatible one. Meanwhile,
we noticed that incorporating the knowledge rules can also
result in certain failed triplets. This can be explained by the
fact that certain probabilistic matching rules extracted from
the training dataset can be less robust and not applicable for
all cases. For example, the rule “the coat goes better with the
dress than skirt” adopted by PKD is unsuitable for the first
failed triplet misjudged by PKD-DBPR, where the coat looks
more compatible with the given skirt.
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Fig. 4. Comparison between PKD-DBPR and DBPR on the testing triplets. All the triplets satisfy the ground truth that ti : b j � bk , where “�” denotes
the pairwise preference. We only list the keywords of the metadata of items and bold the values of the rules in PKD-DBPR. For each triplet, the green value
refers to the higher co-occurrence frequency with the the black value of top ti , compared with the red one. For example, the rule activated by the first sample
is “coats go better with dresses than skirts”.

TABLE IV

COMPARISON BETWEEN AKD-DBPR AND PKD-DBPR ON

FASHIONVC AND EXPFASHION IN TERMS OF AUC (%)

3) PKD-DBPR shows superiority over AKD-DBPR, indi-
cating that the advantage of performing knowledge distillation
in a probabilistic manner. One plausible explanation is that
PKD-DBPR is more capable of handling the vast and fuzzy
fashion domain knowledge than AKD-DBPR, and covers more
domain knowledge to assist the compatibility modeling.

C. Different Knowledge Distillation Methods

To gain more deep understanding of different knowledge
distillation methods, we further carried out detailed com-
parison between AKD-DBPR and PKD-DBPR. Table IV
shows the performance comparison between PKD-DBPR and
AKD-DBPR with different rule configurations on two datasets.
Each rule configuration constrains the attributes of fashion
items that can be used to derive the knowledge rules for
AKD-DBPR and PKD-DBPR. In particular, we chose the
most essential attributes of fashion items contributing to the
clothing matching: category and color. Notably, according
to [2], the rules utilized in AKD-DBPR are manually selected
from Fm by the fashion-lovers. From Table IV, we found
that PKD-DBPR consistently outperforms AKD-DBPR with
different rule configurations across different datasets. This
reconfirms the effectiveness of compiling the knowledge in

the probabilistic manner, where the large amount of fuzzy
human knowledge can be encoded properly to boost the
performance. Furthermore, we observed that rules pertaining
to category are more robust than those regarding color in
both AKD-DBPR and PKD-DBPR. The possible reasons are
threefold. 1) The category-related knowledge rules, like “the
T-shirt goes well with the shorts”, are more common and
easier to be recognized by the public, presenting the higher
robustness and hence providing the better guidance to the
data-driven model. 2) The color-related matching rules can be
fuzzy and highly subjective, making it hard to properly encode
the underlying knowledge. And 3) the category metadata of
fashion items is better structured as compared to the color
attribute extracted from the visual metadata.

To intuitively reflect the advantage of our PKD, we illus-
trated the result comparison between AKD-DBPR and
PKD-DBPR on several testing triplets in Figure 5. For better
illustration, we defined that “value1 + value2” denotes the
positive rule in AKD-DBPR, while “no value1 + value2”
represents the negative rule. For example, “coat + dress”
stands for the positive rule “coats can go with dresses”,
and “no silk + chiffon” represents the negative rule “silk
tops cannot go with chiffon bottoms”. Checking the rules
respectively derived from the same metadata for AKD-DBPR
and PKD-DBPR, we observed that PKD-DBPR outperforms
AKD-DBPR especially when the given sample meets a weak
matching rule that would be discarded by AKD but considered
by PKD. For example, the first sample in Figure 5 activates the
matching rule “the red top goes better with the white bottom
than the pink one”, which would be ignored by AKD but
considered to be a weak rule for PKD as f q(red, whi te) is
slightly larger than f q(red, pink) according to our dataset. In
a sense, the ability of encoding more fuzzy human knowledge
contributes to the better performance of PKD-DBPR. Unfor-
tunately, PKD-DBPR can also yield several failed triplets,
especially when the rules triggered by the given sample triplet



HAN et al.: NEURAL COMPATIBILITY MODELING WITH PROBABILISTIC KNOWLEDGE DISTILLATION 879

Fig. 5. Comparison between PKD-DBPR and AKD-DBPR on several testing triplets. All the triplets satisfy the ground truth that ti : b j � bk , where “�”
denotes the pairwise preference. We list the keywords of the metadata of items and bold the values of the rules. For each triplet, the green value refers to the
higher co-occurrence frequency with the the black value of top ti , compared with the red one.

Fig. 6. Comparison among different approaches with different dataset sizes.

are much comparable. For example, due to the fact that the
coat can go with either the dress or pants, the matching rules
activated by the first sample in the rightmost column would
be encoded softly by PKD but hard by AKD, where the coats
would be encouraged to go with the dress than pants. In this
case that the given dress and pants both seem to be visually
compatible with the coat, the hard rule guidance can be more
powerful.

In addition, to evaluate the contribution of the fashion
domain knowledge in reducing the data dependency, we also
explored the performance of knowledge distillation methods
with different amounts of training samples. Figure 6 illus-
trates the performance comparison of different approaches
with different sizes of the training dataset. As we can see,
the performance of all the approaches decreases gradually
when the dataset size decreases from 100% to 30%, which
is reasonable as the more training samples the model is fed,
the better performance the model can achieve. Moreover,
we found that AKD-DBPR and PKD-DBPR both outperform
DBPR consistently at different sizes in both datasets, and the
performance improvement grows with the number of training
samples decreases, indicating the effectiveness of the fashion
domain knowledge in scenarios with less labeled data samples.
Besides, we also observed that the performance declining

TABLE V

COMPARISON OF KNOWLEDGE ENCODING METHODS WITH RULES THEY

COMMONLY OWNED IN TERMS OF AUC (%) ON TWO DATASETS

speed of PKD-DBPR is lower than AKD-DBPR which may
be attributed again to the relatively abundant knowledge rules
covered by PKD-DBPR.

Moreover, as both AKD-DBPR and PKD-DBPR are effec-
tive in knowledge distillation, to gain more thorough insights,
we further integrated these two methods and obtained a new
derivative AKD-PKD-DBPR, where the attentive rule reward
of AKD-DBPR and probabilistic rule reward of PKD-DBPR
are fused with equal weights in the knowledge distillation
process. Notably, for fairness, we employed the common rules
adopted by AKD-DBPR and PKD-DBPR. Table V shows the
performance comparison among different methods. Interest-
ingly, we found that the performance of all these methods are
comparable. One possible explanation is that the effects of
the probabilistic rule reward in PKD-DBPR and attentive rule
reward in AKD-DBPR are essentially similar. To intuitively
illustrate such similarity, we listed the attentive rule reward in
AKD-DBPR and probabilistic rule reward in PKD-DBPR with
a testing triplet example in Figure 7. As we can see, although
AKD-DBPR and PKD-DBPR set different rule confidences
and rule probabilities for different rules, respectively, the total
rule rewards for the testing triplet of both methods are gener-
ally consistent. This reconfirms the advantage of PDK-DBPR
in simplifying the rule confidence assignment to certain
extent.
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Fig. 7. Illustration of the rule confidence setting.

TABLE VI

EFFECTS OF INTERNAL AND EXTERNAL RULES OF PKD-DBPR
IN TERMS OF AUC (%) ON FASHIONVC

D. Analysis on Rule Guidance

Furthermore, to comprehensively verify the rule guidance
on PKD-DBPR, we evaluated PKD-DBPR on FashionVC with
different knowledge rules, where we took into account both
the internal and external rules. In particular, we treated the
matching rules obtained from FashionVC as the internal rules,
and those derived from all the outfits of ExpFashion as the
external ones, which would be of high representativeness due
to the considerable quantity of ExpFashion. Table VI exhibits
the performance of the student network and teacher network of
PKD-DBPR with different rule configurations across different
sources. Similarly, each rule configuration here constrains the
attributes (i.e., the category or color) of items that can be
utilized for the knowledge derivation for PKD-DBPR. The
first row refers to the performance of the baseline DBPR.
As can be seen, both the internal and external rules can
boost the performance of the compatibility modeling, which
indicates the satisfactory generality of PKD-DBPR pertaining
to not only the internal knowledge but also the external one.
In addition, we noticed that the rules regarding the attribute
category consistently yield the better performance than that
on the attribute color, in both internal and external settings.
This validates the fact that the category related rules are more
widely recognized by the public and can provide the better
guidance to the data-driven compatibility modeling neural
network again.

E. Fashion Item Retrieval

To assess the practical value of the proposed compatibility
modeling scheme, we conducted experiments in the context

Fig. 8. Performance of different approaches on complementary fashion item
retrieval.

Fig. 9. Ranking result illustration of PKD-DBPR, AKD-DBPR, and DBPR.
The bottoms highlighted in the red boxes are the positive ones.

of the complementary fashion item retrieval. Considering
that it is time-consuming to rank all the bottoms for each
top, we utilized the common strategy [26] that feeds each
top ti appeared in Stest as a query, and randomly selected T
bottoms as ranking candidates, where there is only one positive
bottom. We then fed the candidates into the trained neural
networks to acquire their latent representations and calculated
the compatibility score mij according to Eqn. (2), based on
which we generated a ranking list of the bottoms for the given
top. In this work, we focused on the average position of the
positive bottom in the ranking list and thus adopted the mean
reciprocal rank (MRR) metric [46], [47].

Due to the sparsity of the real-world dataset, we found that
there are 1,262 tops, i.e., 64.59% of the 1,954 unique tops in
the testing set, have not been observed in Strain . To compre-
hensively evaluate the proposed scheme, we compared it with
different models using different type of testing tops: observed
testing tops and unobserved ones. Figure 8 shows the perfor-
mance comparison among different approaches on the comple-
mentary fashion item retrieval. We found that PKD-DBPR and
AKD-DBPR outperform all the other baselines consistently at
different numbers of bottom candidates, which demonstrates
the advantage of incorporating the domain knowledge in the
complementary fashion item retrieval. In addition, PKD-DBPR
and AKD-DBPR achieve satisfactory performance with both
observed and unobserved tops, indicating their capabilities of
handling the cold start problem. Moreover, we observed that
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PKD-DBPR outperforms AKD-DBPR in both scenarios, con-
firming the superiority of the probabilistic knowledge encoding
manner in the real application.

We also listed the intuitive ranking results of PKD-DBPR,
AKD-DBPR and DBPR for several testing tops in Figure 9.
As we can see, as the first example activates the rule “tank
top + shorts”, AKD-DBPR and PKD-DBPR both bring the
shorts in the candidate list forward. Moreover, since PKD
incorporates more fuzzy human knowledge and integrates the
weak rule “the red top goes better with the white bottom than
the pink one”, the order of the positive bottom gets further
boosted to the first place, resulting in the better performance
of PKD-DBPR than AKD-DBPR.

V. CONCLUSION AND FUTURE WORK

In this work, we present a knowledge-guided compatibility
modeling scheme to fulfil the clothing matching task, which
is able to learn from not only the specific data samples but
also the general knowledge rules. Considering that the human
knowledge regarding clothing matching can be vast and fuzzy,
we introduce an effective knowledge encoding method, PKD,
which compiles the matching rules into the pure data-driven
neural network in a probabilistic manner, making it possible
to cope with the abundant domain knowledge without the
manual screening. Extensive experiments conducted on two
real-world datasets FashionVC and ExpFashion verify the
portability of our model and demonstrate the advantages of
integrating the domain knowledge in the context of clothing
matching. Moreover, we find that both the internal and external
rules can boost the performance of PKD-DBPR, validating
the portability of our model. Interestingly, we also notice that
knowledge rules regarding the category attribute are more
powerful than those pertaining to other attributes (e.g., color)
in guiding the compatibility modeling.

In this work, we mainly focus on taking the domain
knowledge into consideration to tackle the problem of general
clothing matching, but ignore the factor of user personal pref-
erences in clothing matching. Therefore, in the future, we plan
to explore the potential of the user context in complementary
clothing matching.
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